Cho AABC vuông tại A. biết AB = 3cm, BC = 5cm.
a. Giải tam giác vuông ABC.
b. Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AC tại D. Tình c. độ dài các đoạn thẳng AD, BD.
Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh: BF.BD = BE.BC. Tứ giác AEBF là hình gì ? Tỉnh chu vi và diện tích tứ giác AEBF.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: Xét ΔBDC vuông tại B có BA là đường cao
nên \(BA^2=AD\cdot AC\)
=>\(AD=\dfrac{3^2}{4}=\dfrac{9}{4}=2,25\left(cm\right)\)
ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD=\sqrt{2,25^2+3^2}=3,75\left(cm\right)\)
Xét ΔBAD vuông tại A có AF là đường cao
nên \(BF\cdot BD=BA^2\left(1\right)\)
Xét ΔBAC vuông tại A có AE là đường cao
nên \(BE\cdot BC=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BF\cdot BD=BE\cdot BC\)
Xét tứ giác AEBF có \(\widehat{AEB}=\widehat{AFB}=\widehat{EBF}=90^0\)
nên AEBF là hình chữ nhật
ΔABC vuông tại A có AE là đường cao
nên \(\left\{{}\begin{matrix}AE\cdot BC=AB\cdot AC\\BE\cdot BC=BA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\BE=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)
AEBF là hình chữ nhật
=>\(S_{AEBF}=AE\cdot BE=2,4\cdot1,8=4,32\left(cm^2\right)\)