Chứng minh rằng 1-1/2^2-1/3^2-1/4^2-...-1/2009^2>1/2009
ai làm giúp mình với mình dang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=3(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)=2^32-1
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2140.2141}\)
Có \(\frac{1}{2^3}< \frac{1}{2.3};\frac{1}{3^3}< \frac{1}{3.4};...;\frac{1}{2140^3}< \frac{1}{2140.2141}\)
\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\). Từ đó ta tính được A
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2140}-\frac{1}{2141}\)
\(A=\frac{1}{2}-\frac{1}{2141}\Rightarrow A>\frac{1}{2}\). Mà \(\frac{1}{2}< \frac{2}{3}\Rightarrow A< \frac{2}{3}\)
Có \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< A\Rightarrow\)\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2140^3}< \frac{2}{3}\)
A<1/1*2+1/2*3+...+1/2021*2022
=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1
https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html
Em tk trang đó nha
Ta có
\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)
\(\dfrac{1}{2}>\dfrac{1}{100}\)
\(\dfrac{1}{3}>\dfrac{1}{100}\)
................
\(\dfrac{1}{100}=\dfrac{1}{100}\)
=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)
=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)
=> 1 < A < 2
Vậy A không phải số tự nhiên
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}\)
\(=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\right)\)
\(>1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\right)\)
\(=1-\left(1-\frac{1}{2009}\right)\)
\(=\frac{1}{2009}\)