cho mik hỏi tìm x : {x+1}x{x-2}<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+5\right)\left(x-3\right)>0\)
Th1 : \(\hept{\begin{cases}x^2+5>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>-5\\x< 3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x^2+5< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< -5\\x>3\end{cases}}}\)
a) \(\left(x^2+5\right)\left(x-3\right)>0\Leftrightarrow x-3>0\) (do \(x^2+5>0,\forall x\in R\)).
\(\Leftrightarrow x>3\).
b) \(\left(-x^2-17\right).\left(x+1\right)>0\Leftrightarrow-\left(x^2+17\right).\left(x+1\right)>0\)\(\Leftrightarrow-\left(x+1\right)>0\) ( do \(x^2+17>0\) ).
\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\).
c) \(-2\left(7-x\right)< 0\Leftrightarrow2x-14< 0\)\(\Leftrightarrow2x< 14\)\(\Leftrightarrow x< 7\).
d) \(\left(x-2\right).\left(x+2\right)< 0\Leftrightarrow x^2+2x-2x-4< 0\)\(\Leftrightarrow x^2-4< 0\) \(\Leftrightarrow x^2< 4\)\(\Leftrightarrow\left|x\right|< 2\)\(\Leftrightarrow-2< x< 2\).
vì \(\left(x+1\right)< \left(x+2\right)\)
để \(\left(x+1\right).\left(x+2\right)>0\)
=> \(\hept{\begin{cases}x+1< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>-2\end{cases}}}\)
=> ko có giá trị x t/mãn
b)
để \(\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)
=> \(\hept{\begin{cases}x-2>0\\\left(x+\frac{2}{3}\right)\end{cases}>0}hay\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}hay\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
vậy \(x>2,x< -\frac{2}{3}\)
Thôi làm thế này đi:3
\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)
Áp dụng BĐT Cosi ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=-\frac{2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có:
\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:
\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )
\(\Rightarrow A\ge-1-2=-3\)
dấu "=" xảy ra khi:
\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )
vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(\left(x^2+1\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=-1\\x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=-5\end{cases}}\)
vậy x = -5
( x - 7 ) ( x + 3 ) < 0
=> (x-7) và (x+3) trái dấu
=> nếu x-7 < 0 thì x+3 >0
nếu x-7 >0 thì x+3<0
+ xét TH 1
=> x-7<0 => x < 7
x+3> 0 => x > -3
hay -3 < x < 7 (thõa mãn)
+ xét TH 2:
=> x-7>0 => x>7
x+3<0 = >x<-3
=> vô lí x ko thể lớn hơn 7 mà bé hơn -3
vậy -3<x<7
a) x^2(3-x)=0
=> TH1 : x^2 =0 => x=0
TH2 : 3-x=0 => x= 3-0=3
Vậy x=0; x=3
b) x(x-4) <0
=> TH1 : x<0
TH2 : x-4< 0 => x<4
Vậy x< 0 thì thỏa mãn yêu cầu