a, x-\(\frac{5}{4}\)=\(\frac{3}{4}\)
B.\(\sqrt{2}\)X-2.X+1=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
1)
Đkxđ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
Khi đó A=\(\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)
2) Đề là \(5-2\sqrt{6}\)sẽ hợp lý hơn nha bn
Đkxđ\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-\sqrt{2}\ne0\end{matrix}\right.\)
Ta có \(5-2\sqrt{6}=\left(1-\sqrt{6}\right)^2\)
Khi đó
B= \(\frac{1-\sqrt{6}}{1-\sqrt{6}-\sqrt{2}}\)
1)
đk: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Rgọn
A=\(\frac{x+12}{x-4}+\frac{1}{\sqrt{x}+2}-\frac{4}{\sqrt{x}-2}\)
= \(\frac{x+12+\sqrt{x}-2-\left(4\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
2)
B=\(\frac{3\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{10\sqrt{x}}{x-4}\) đk \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
= \(\frac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
= \(\frac{3x-5\sqrt{x}-2-\left(x+3\sqrt{x}+2\right)+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{3x-5\sqrt{x}-2-x-3\sqrt{x}-2+10\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{2x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\left(2x+2\sqrt{x}\right)-\left(4\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{2\sqrt{x}\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{\left(\sqrt{x}+2\right)2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2\)
Chúc bn học tốt
Nhớ tích cho mk nhé
Bạn xem lại đề bài 1 và 2.b nhé !
2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)
\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)
\(A=5\sqrt{2}-3-5\sqrt{2}-1\)
\(A=-4\)
a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)
\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)
\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)
\(=\left(4-8+25\right)\sqrt{x^2+1}\)
\(=21\sqrt{x^2+1}\)
b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)
\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)
\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)
\(B=\sqrt{3}\)
a) \(x-\frac{5}{4}=\frac{3}{4}\Rightarrow x=\frac{3}{4}+\frac{5}{4}=2\)
b) \(\sqrt{2}x-2x+1=1\)
\(\Rightarrow x\left(\sqrt{2}-2\right)=0\)
\(\Rightarrow x=0\)
Vậy x=0