Cho 3 số a,b,c;abc=1 mà:
\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=\(\frac{1}{a+b+c}\)
Chứng minh rằng: trong 3 số a,b,c có ít nhất 2 số đối nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 3 so tu nhien a , b , c mình chỉ cho 3 so tu nhien nho thoy a = 8 ; b = 13 ; c = 12
a ) (a+b+c) : 5 = (8 + 13 + 12) : 5 = 33 : 5 = 6 ( du 3 )
( a + b - c ) : 5 =(8 + 13 - 12 ) : 5 = 9 : 5 = 2 ( du 1)
(a + c - b) : 5 = ( 8 + 12 - 13 ) : 5 =7 : 5 = 1( du 2)
b)2 so co tong chia het cho 5 co 2 so : 8 + 12 va 13 + 12
2 so co hieu chia het cho 3 la co 1 so : 13 - 8
chuc ban hoc tot minh chi hoc lop 5 thoy sai cho nao may ban sua gium minh nha
Đề \(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)\(\left(ĐKXĐ:a,b,c\ne0\right)\)\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+\left(abc+bc^2+ac^2-abc\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\a+c=0\end{cases}\RightarrowĐpcm}\)