Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
a: ĐKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x-2)(x+1)<>0
=>x<>2 và x<>-1
b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)
c:
A<1
=>A-1<0
\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)
=>x-2<0
=>x<2
a: DKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x^2-x-2)<>0
=>(x+1)(x-2)(x+1)<>0
=>\(x\notin\left\{2;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\dfrac{\left(x-1\right)^2}{x-2}\)
c: Để A<1 thì A-1<0
=>\(\dfrac{x^2-2x+1-x+2}{x-2}< 0\)
=>x-2<0
=>x<2
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007
\(A=3+3^2+3^3+...+3^{2006}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
Ta có \(2A=3^{2007}-3\)
=> 2A+3=\(3^{2007}-3+3=3^{2007}\)
=> x=2007
a, P(x)=5x3+x2-3x+7
Q(x)=-5x3-x2+4x-5(đã thu gọn-bn tự trình bày nha)
b,P(x)=5x3+x2-3x+7
+
Q(x)=-5x3-x2+4x-5
M(x)= x-2
P(x)= 5x3 +x2 -3x+7
-
Q(x)=-5x3 - x2 + 4x-5
N(x)=10x3+2x2-7x+12
c, x-2=0
x=0+2
x=2
=>Nghiệm bằng 2.
\(A=3+3^2+...+3^{2006}\\ 3A=3\left(3+3^2+...+3^{2006}\right)\\ 3A=3^2+3^3+...+3^{2007}\\ 3A-A=\left(3^2+3^3+..+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\\ 2A=3^{2007}-3\\ 2A+3=\left(3^{2007}-3\right)+3\\ 2A+3=3^{2007}\)
Mà: `2A+3=3x=>3^2007=3x`
`=>x=3^2007:3`
`=>x=3^2006`