K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Q = x^2-12x+36+5

= x^2 - 2.x.6 + 6^2 + 5 = (x-6)^2 + 5 >=5 với mọi x

=> Q luôn ko âm với mọi giá tri biến ( ĐPCM )

5 tháng 11 2017

Ta có: Q = x^2 - 12x + 41

= x^2 - 2.x.6 + 62 + 5

= (x-6)2 + 5 
Vì bình phương 1 số luôn dương và 5>0 nên Q >0

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

15 tháng 10 2018

\(-9x^2+12x-15\)

\(=-\left[\left(3x\right)^2-2.3x.2+2^2\right]-11\)

\(=-\left(3x-2\right)^2-11\)

Ta có: \(\left(3x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11\le-11\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11< 0\forall x\)

\(\Rightarrow-9x^2+12x-15< 0\forall x\)

                                           đpcm

Tham khảo nhé~

12 tháng 10 2017

P = \(-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\)với mọi x \(\Rightarrow\)GTN của P là -1 đạt được khi x = 2

Q = \(-4x^2+12x-12=-\left(4x^2-12x+12\right)\)

\(=-\left(4x^2-12x+9+3\right)=-\left(2x-3\right)^2-3\)

\(-\left(2x-3\right)^2\le0\)với mọi x \(\Rightarrow\)GTNN của Q là -3 đạt được khi x = \(\frac{3}{2}\)

11 tháng 10 2017

P=-x2+4-5 =-x2-1

ta có -x 2 < hoặc bằng 0 với mọi x

=> P=-x2-1<hoặc bằng -1

=>P luôn luôn âm

\(A=-x^2+3x-7\)

\(=-\left(x^2-3x+7\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)

20 tháng 9 2021

\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)

16 tháng 9 2018

-11 - ( x - 1 ) *( x - 2 )

= -11 - ( x^2 - 2x - x + 2 )

= - 11 - x^2 + 2x + x - 2

= -11 - x^2 + 3x - 2

= - 13 - x^2 + 3x

Với x < 3
=> x^2 < I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Với x = 3 hoặc x = -3
=> x^2 = I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Tương tự với x > 3
Vậy -11 - ( x - 1 )( x - 2 ) luôn âm với mọi x

21 tháng 9 2022

Không biê

= ( x2 - 2 .x . 1/2 +1/4 ) 3/4

= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương  

học tốt

14 tháng 10 2019

Ta có:

\(x^2-x+1\)

\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)

hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến