K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì hệ số góc là -4 nên a=-4

=>y=-4x+b

Thay x=2 và y=-5 vào y=-4x+b, ta được:

b-8=-5

=>b=3

Vậy: y=-4x+3

b: Vì đồ thị hàm số y=ax+b song song với đường thẳng y=2x-1

nên \(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)

Vậy: y=2x+b(b\(\ne\)-1)

c: Thay x=0 và y=4 vào y=ax+b, ta được:

\(a\cdot0+b=4\)

=>b=4

=>y=ax+4

Thay x=4/5 và y=0 vào y=ax+4, ta được:

\(\dfrac{4}{5}a+4=0\)

=>\(\dfrac{4}{5}a=-4\)

=>a=-5

vậy: y=-5x+4

 

d: Vì đồ thị hàm số y=ax+b vuông góc với đường thẳng y=-2x+3 nên -2a=-1

=>\(a=\dfrac{1}{2}\)

Vậy: \(y=\dfrac{1}{2}x+b\)

Thay x=1/4 và y=-5 vào y=1/2x+b, ta được:

\(b+\dfrac{1}{2}\cdot\dfrac{1}{4}=-5\)

=>\(b=-5-\dfrac{1}{8}=-\dfrac{41}{8}\)

31 tháng 10 2018

a) Đồ thị hàm số y = ax + b đi qua A(1; 3) và B(-1; -1)

Giải bài 6 trang 132 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy a = 2; b = 1; hàm số y = 2x + 1.

b) y = ax + b song song với y = x + 5

⇒ a = 1.

Đồ thị hàm số đi qua C(1; 2) ⇔ 2 = a.1 + b ⇔ a + b = 2 ⇒ b = 1.

Vậy a = 1; b = 1.

14 tháng 4 2019

a) Đồ thị hàm số y = ax + b đi qua A(1; 3) và B(-1; -1)

Giải bài 6 trang 132 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy a = 2; b = 1; hàm số y = 2x + 1.

b) y = ax + b song song với y = x + 5

⇒ a = 1.

Đồ thị hàm số đi qua C(1; 2) ⇔ 2 = a.1 + b ⇔ a + b = 2 ⇒ b = 1.

Vậy a = 1; b = 1.

1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:

-2a+b=5 và a+b=-4

=>a=-3; b=-1

2: 

a: Để hàm số đồng biến thì 2m-1>0

=>m>1/2

14 tháng 6 2017

Chọn D

18 tháng 3 2019

Chọn D

27 tháng 4 2017

Đáp án B

Ta có   g x = f x − x 2 2 → g ' x = f ' x − x ;    ∀ x ∈ ℝ

Phương trình g ' x = 0 ⇔ f ' x = x . Dựa vào hình vẽ, ta thấy đồ thị hàm số y = f ' x  cắt đường thẳng y = x  tại ba điểm phân biệt   x = − 2 ;   x = 0 ;   x = 1

Do đó, để phương trình g x = 0  có 4 nghiệm phân biệt   ⇔ g 0 > 0 g 1 < 0 ,   g − 2 < 0

NV
16 tháng 4 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-\sqrt[]{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt[]{1-bx}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt[]{1-bx}}\right)=\dfrac{a}{3}+\dfrac{b}{2}\)

Hàm liên tục tại \(x=0\) khi:

\(\dfrac{a}{3}+\dfrac{b}{2}=3a-5b-1\Leftrightarrow8a-11b=3\)

20 tháng 12 2021

b: Để hai hàm só song song thì m=5

20 tháng 12 2021

Chi tiết ra hơn được hong ạ

Mình cần gấp

30 tháng 3 2019

Mặt khác hàm số có đạo hàm tại điểm

Chọn A