cho hàm số : y= x^3/3 -mx^2 + mx + m-1 . tìm m để y>0 Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(y'=\frac{2}{3}x+m\geq 0, \forall x\in\mathbb{R}\Leftrightarrow m\geq -\frac{2}{3}x, \forall x\in\mathbb{R}\)
\(\Leftrightarrow m\geq \max (\frac{-2}{3}x), \forall x\in\mathbb{R}\)
Vì $\frac{-2}{3}x$ không có max với mọi $x\in\mathbb{R}$ nên không tồn tại $m$
a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)
=>\(y'=-x^2-2m\cdot x+4\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)
=>\(4m^2+16< =0\)
mà \(4m^2+16>=16>0\forall m\)
nên \(m\in\varnothing\)
b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)
=>\(y'=-x^2-m\cdot x+1\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)
=>\(m^2+4< =0\)
mà \(m^2+4>=4>0\forall m\)
nên \(m\in\varnothing\)
\(m=0\) không thỏa mãn
Với \(m\ne0\):
\(y'=4mx^3-2\left(m+1\right)x=2x\left(2mx^2-\left(m+1\right)\right)\)
Hàm có 3 cực trị khi:
\(\dfrac{m+1}{m}>0\Rightarrow\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m< -1\\m>0\end{matrix}\right.\)
y′ = 3 x 2 + 2(m + 3)x + m
y′ = 0 ⇔ 3 x 2 + 2(m + 3)x + m = 0
Hàm số đạt cực trị tại x = 1 thì:
y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3
Khi đó,
y′ = 3 x 2 – 3;
y′′ = 6x;
y′′(1) = 6 > 0;
Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.
a: Thay x=1 và y=1 vào (d), ta được:
m+3=1
hay m=-2
b: Vì (d)//y=-2x+3 nên a=-2
Vậy: (d): y=-2x+b
Thay x=0 và y=-3 vào (d), ta được:
b=-3