Câu 9:b,Chứng minh rằng :2015^2016 - 1 chia hết cho 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
có 7^2016+7^2015+7^2014
=7^2014(7^2+7+1)
=7^2014.57
SUY RA biểu thức trên luôn chia hết cho 57
Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]
= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )
= 1x1008 = 1008
Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )
a) Ta thấy: \(32^{2016}=32^{4.504}\) và 32 có chữ số tận cùng là 2
=> \(32^{2016}\) có chữ số tận cùng là 6
Lại có: \(12^{1080}=12^{4.270}\) và 12 có chữ số tận cùng là 2
=> \(12^{1080}\)có chữ số tận cùng là 6
Do đó: Chữ số tận cùng của \(32^{2016}-12^{2080}\) là \(6-6=0\)
Vì vậy: \(32^{2016}-12^{1080}\) chia hết cho 10
b) Ta thấy: \(79^{2015}\) có 2015 là số lẻ và 79 có chữ số tận cùng là 9
=> Chữ số tận cùng của \(79^{2015}\) là 9
Lại có: \(81^{2014}\) có 81 có chữ số tận cùng là 1
=> \(81^{2014}\) có chữ số tận cùng là 1
Do đó: \(79^{2015}+81^{2014}\) có chữ số tận cùng là 0 vì 9+1=10
Vì vậy: \(79^{2015}+81^{2014}\) chia hết cho 10
Ta có:
\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11
Vậy 32016+32015-32014 chia hết cho 11 (đpcm)
--------------------------
Ta có:
- \(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)
- \(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2)
Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]
Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)
9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)
\(=3^{2014}.11⋮11\)
Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11
Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:
36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9)
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2)
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.
9) Ta có :
32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)
Tớ chỉ làm đc phần 9 thui ^_^
\(2015^{2016}-1=\left(2015-1\right)\cdot\left(2015^{2015}+2015^{2014}+...+1\right)\)
\(=2014\cdot\left(2015^{2015}+2015^{2014}+...+1\right)⋮2014\)