K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 8 2024

\(x^2y-5y-8x-1=0\)

\(\Leftrightarrow y\left(x^2-5\right)=8x+1\)

\(\Rightarrow y=\dfrac{8x+1}{x^2-5}\) (1)

y nguyên \(\Rightarrow\dfrac{8x+1}{x^2-5}\) nguyên

\(\Rightarrow8x+1⋮x^2-5\)

\(\Rightarrow x\left(8x+1\right)⋮x^2-5\)

\(\Rightarrow8\left(x^2-5\right)+x+40⋮x^2-5\)

\(\Rightarrow x+40⋮x^2-5\)

\(\Rightarrow8\left(x+40\right)-\left(8x+1\right)⋮x^2-5\)

\(\Rightarrow329⋮x^2-5\)

\(\Rightarrow x^2-5\inƯ\left(329\right)\)

Mà \(x^2-5\ge-5;\forall x\)

\(\Rightarrow x^2-5\in\left\{-1;1;11;29;319\right\}\)

\(\Rightarrow x^2\in\left\{4;6;16;34;324\right\}\)

\(\Rightarrow x^2\in\left\{4;16;324\right\}\) do \(x^2\) là SCP

\(\Rightarrow x\in\left\{-18;-4;-2;2;4;18\right\}\)

Thay lần lượt vào (1) ta được: \(\left(x;y\right)=\left(-2;15\right);\left(2;-17\right);\left(4;3\right)\)

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

DD
15 tháng 7 2021

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)

AH
Akai Haruma
Giáo viên
25 tháng 1 2024

Lời giải:

PT $\Leftrightarrow x^2-4xy+(5y^2+2y-3)=0$

Dấu "=" tồn tại nghĩa là pt luôn có nghiệm.

$\Leftrightarrow \Delta'=(2y)^2-(5y^2+2y-3)\geq 0$

$\Leftrightarrow -y^2-2y+3\geq 0$

$\Leftrihgtarrow y^2+2y-3\leq 0$

$\Leftrightarrow (y-1)(y+3)\leq 0$

$\Leftrightarrow -3\leq y\leq 1$

$\Rightarrow y_{\max}=1$

21 tháng 8 2017

Cả buối ấy Huy làm thịt được bốn con gà, tất cả đều là gà trống và không có bất cứ một con gà mái nào. Huy cũng cảm thấy có đôi chút kỳ lạ, bởi vì trong chuống gà của nhà ông Phúc, tại sao lại không hề có một con gà mái nào, gà con cũng không hề có, mà chỉ toàn là gà trống như vậy? Nhưng vấn đề ấy Huy cũng chỉ nghĩ một lúc, rồi lại tự lắc đầu cho rằng mình toàn tự hỏi vớ vẩn linh tinh mấy cái chuyện không đâu.

Làm thịt xong mấy con gà trống, thì mặt trời cũng đã đứng bóng, Huy vội xách mấy con gà đã làm thịt vào nhà đặt vào chiếc nồi nhôm to bằng cái thúng, hết lượt cả bốn con gà đều được sắp đặt ngay ngắn, chiếc cổ gà đều được dúi gọn xuống ngập nồi nước.

Huy toan đóng nắp nồi, thì một cảnh tượng kinh khủng hiện ra. Cái con gà trống anh vừa mới cắt cổ mới đây lại đang nghển cổ dậy kêu quang quác như một con chim lợn. Cái tiếng kêu của nó không phải là thứ âm thanh mà đáng ra giống loài của nó không nên xuất hiện.

Éc éc!

5 tháng 8 2015

 x² + 5y² + 2y - 4xy - 3 = 0 
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0 
<=> (x - 2y)² + (y + 1)² = 4 (*) 

VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng: 
* KN1: 
{(x-2y)² = 0 
{(y+1)² = 4 
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1) 
=> x = -6 và y = -3 

* KN2: 
{(x-2y)² = 4 
{y+1)² = 0 
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất 

Vậy cặp (x, y) cần tìm là: x = -6; y = -3 

22 tháng 10 2017

x² + 2xy + 2y² - 5x - 5y = -6

<=> x² + 2xy + y² - 5(x + y) + y² = -6

<=> (x + y)² - 5(x + y) = - 6 - y²

<=> (x + y)² - 5(x + y) + 25/4 = 25/4 - 6 - y²

<=> (x + y - 5/2)² = (1 - 4y²)/4

<=> (2x + 2y - 5)² = 1 - 4y²

<=> (2x + 2y - 5)² + 4y² = 1 (*)

Từ (*) ta thấy nếu x, y là các số thực thì có vô số cặp (x, y) thỏa.

có thể đề ghi thiếu, ở đây tôi tìm các cặp (x, y) nguyên

*nếu y ≠ 0 thì 4y² ≥ 4, không thỏa (*)

*Vậy y = 0, thay vào (*):

(2x - 5)² = 1

+2x - 5 = -1 => x = 2

+2x - 5 = 1 => x = 3

Vậy có hai cặp nguyên (x, y) thỏa là: (2, 0) và (3, 0)