chứng tơ với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
![](https://rs.olm.vn/images/avt/0.png?1311)
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì n là số tự nhiên => n có dạng 2k hoặc 2k+1 ( k thuộc N )
Xét n=2k => (n+2)(n+5)=(2k+2)(2k+5)=2(k+1)(2k+5) chia hết cho 2 với mọi k thuộc N
Xét n=2k+1=>(n+2)(n+5)=(2k+1+2)(2k+1+5)=(2k+3)2(k+3) chia hết cho 2 với mọi k thuộc N
=> với mọi n thuộc N (n+2)(n+5) luôn chia hết cho 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta chỉ cần trả lời ngắn gọn như sau :
Với n = 2k thì 2k( 2k + 5 ) chia hết cho 2
Với n = 2k + 1 thì ( 2k + 1 ) ( 2k + 1 +5 ) 2 ( k + 3) chia hết cho 2
n(n + 5) = n2 + 5n
+ Nếu n là lẻ thì n2 và 5n đều là lẻ. Khi đó n2 + 5n là chẵn. \(\Rightarrow\) n2 + 5n \(⋮\) 2
+ Nếu n là chẵn thì n2 và 5n đều là chẵn. Khi đó n2 + 5n là chẵn. \(\Rightarrow\) n2 + 5n \(⋮\) 2
\(\Rightarrow\) ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì n là số tự nhiên => n=2k;2k+1(k là số tự nhiên )
Xét n=2k
=> n.(n+5)=2k.(2k+5) chia hết cho 2
Xét n=2k+1
=> n.(n+5)=n.(2k+1+5)=n.(2k+6)=n.2.(k+3) chia hết cho 2
=> với mọi số tự nhiên n thì n.(n+5) chia hết cho 2
=> dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì n \(\in N\) => n chỉ có thể có dạng 2K ( chẵn) hoặc 2K+1 ( lẻ)
TH1: n=2K
Nếu n có dạng 2K => n(n+5)= 2K.(2K+5)
= 2K2.10K
Vì 2K2 và 10K đều là số chẵn => 2K2.10K chia hết cho 2
=> n(n+5) chia hết cho 2
TH2: n=2K+1
Nếu n có dạng 2K+1 => n(n+5)= (2K+1)(2K+1+5)
= (2K+1)(2K+6)
= 2K2+12K+2K+6
Nhận thấy: 2K2;12K;2K và 6 đều là số chẵn => 2K2+12K+2K+6 chia hết cho 2
=> n(n+5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n+5) luôn chia hết cho 2 ĐPCM
Nếu n lẻ =>n+5 chẵn =>n(n+5) chia hết cho 2
Nếu n chẵn =>n(n+5) chia hết cho 2
Vậy n(n+1) chia hết cho 2 với mọi n
Vì 5 là số lẻ ta có :
VD : n là số lẻ :
1.(1 + 5 ) = 6 thì CHC 2
VD : n là số chẵn :
2. (2 + 5) = 12 CHC 2
=> với mọi số tự nhiên thì h n.(n + 5) bao giờ cx CHC 2 .
+Nếu n lẻ thì n+5 chẵn => n+5 chia hết cho 2 =>n.(n+5) chia hết cho 2
+Nếu n chẵn hay n chia hết cho 2 => n.(n+5) chia hết cho 2
=> ĐPCM