K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2024

\(\left(x-40\right)^2-48=-12\\ =>\left(x-40\right)^2=-12+48\\ =>\left(x-40\right)^2=36\\ =>\left(x-40\right)^2=6^2\\ TH1:x-40=6\\ =>x=6+40\\ =>x=46\\ TH2:x-40=-6\\ =>x=40-6\\ =>x=34\)

Vậy: ... 

13 tháng 8 2024

\(\left(x-40\right)^2-48=-12\)

\(\left(x-40\right)^2=\left(-12\right)+48\)

\(\left(x-40\right)^2=36\)

\(\left(x-40\right)^2=6^2\)

\(x-40=6\)

\(x=6+40\)

\(x=46\)

4 tháng 5 2019

a. x2 = x 

=> x2 - x  =0 

=> x(x - 1) = 0

=> x = 0 hoặc x = 1

b. 3x + 12 = 4x + 16

=> 3x + 12 - 4x - 16 = 0

=> (3x - 4x) + (12 - 16) = 0

=> -x - 4 = 0 

=> x = 4

4 tháng 5 2019

giúp mk với 945 x 239 -1 / 944 + 945 x 238

             

4 tháng 6 2016

\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+\sqrt{60}}\)

2 tháng 7 2016

\(\sqrt{\sqrt{5-\sqrt{3x}=}\sqrt{8+\sqrt{60}}}\) k mk nha

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

5 tháng 5 2020

Gọi x1,x2 là các nghiệm của phương trình đã cho

Áp dụng hệ thức Vi-et,ta có :

x1 + x2 = -5 ; x1x2 = -1

gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :

y1 + y2 = x14 + x24 , y1y2 = x14x24

Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27

Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727

y1y2 = ( x1x2 )4 = 1

Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0

5 tháng 5 2020

Ta co: P = -1 <0 

=> (1) có 2 nghiệm phân biệt khác dấu 

Gọi hai nghiệm đó là \(x_1;x_2\)

=> \(x_1+x_2=-5;x_1.x_2=-1\)

Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)

\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)

\(=727\)

=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là: 

\(x^2-727x+1=0\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Tam thức bậc hai \(f\left( x \right) = 2{x^2} - 15x + 28\) có hai nghiệm phân biệt là \({x_1} = \frac{7}{2};{x_2} = 4\)

và có \(a = 2 > 0\) nên \(f\left( x \right) \ge 0\) khi thuộc hai nửa khoảng \(\left( { - \infty ;\frac{7}{2}} \right];\left[ {4; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(2{x^2} - 15x + 28 \ge 0\) là \(\left( { - \infty ;\frac{7}{2}} \right] \cup \left[ {4; + \infty } \right)\)

b) Tam thức bậc hai \(f\left( x \right) =  - 2{x^2} + 19x + 255\) có hai nghiệm phân biệt là \({x_1} =  - \frac{{15}}{2};{x_2} = 17\)

và có \(a =  - 2 < 0\) nên \(f\left( x \right) > 0\) khi thuộc khoảng \(\left( { - \frac{{15}}{2};17} \right)\)

Vậy tập nghiệm của bất phương trình \( - 2{x^2} + 19x + 255 > 0\) là \(\left( { - \frac{{15}}{2};17} \right)\)

c) \(12{x^2} < 12x - 8 \Leftrightarrow 12{x^2} - 12x + 8 < 0\)

Tam thức bậc hai \(f\left( x \right) = 12{x^2} - 12x + 8\) có \(\Delta  =  - 240 < 0\) và \(a = 12 > 0\)

nên \(f\left( x \right) = 12{x^2} - 12x + 8\) dương với mọi x

Vậy bất phương trình \(12{x^2} < 12x - 8\) vô nghiệm

d) \({x^2} + x - 1 \ge 5{x^2} - 3x \Leftrightarrow -4{x^2} + 4x - 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = -4{x^2} + 4x - 1\) có \(\Delta  = 4^2 - 4.(-4).(-1)\) 

Do đó tam thức bậc hai có nghiệm kép \({x_1} = {x_2}= \frac{1}{2}\) và a = - 4 < 0

Vậy bất phương trình \({x^2} + x - 1 \ge 5{x^2} - 3x\) có tập nghiệm S = {\(\frac{1}{2}\)}

26 tháng 3 2018

Phương trình bậc hai 6x2 + x + 5 = 0

Có a = 6; b = 1; c = 5; Δ = b2 – 4ac = 12 – 4.5.6 = -119 < 0

Vậy phương trình vô nghiệm.

24 tháng 7 2017

 Phương trình bậc hai 6x2 + x – 5 = 0

Có a = 6; b = 1; c = -5; Δ = b2 – 4ac = 12 – 4.6.(-5) = 121 > 0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9