K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-10x-11=0\)

=>\(x^2-10x+25-36=0\)

=>\(\left(x-5\right)^2-6^2=0\)

=>(x-5-6)(x-5+6)=0

=>(x-11)(x+1)=0

=>\(\left[{}\begin{matrix}x-11=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-1\end{matrix}\right.\)

12 tháng 8 2024

\(x^2\)\(-2.x.5+5^2\)\(-36\)\(=0\)

\(\Leftrightarrow\)\(\left(x-5\right)^2\)\(-36=0\)

\(\Leftrightarrow\left(x-5^{ }\right)^2\)\(=36\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-1\end{matrix}\right.\)

\(\left(4A\right)\\ a,\\ \Leftrightarrow\left[\left(x-2\right)\left(2x+3\right)\right]\left[\left(x-2\right)\left(2x+3\right)\right]=0\\ \Leftrightarrow\left(-x-5\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x-5=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{-1}{3}\end{matrix}\right.\\ b,\\ \Leftrightarrow\left[3\left(2x+1\right)\right]^2-\left[2\left(x+1\right)\right]^2=0\\ \Leftrightarrow\left[3\left(2x+1\right)-2\left(x+1\right)\right]\left[3\left(2x+1\right)+2\left(x+1\right)\right]=0\\ \Leftrightarrow\left(4x+1\right)\left(8x+5\right)=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-5}{8}\end{matrix}\right.\\ c,\\ \Leftrightarrow\left[\left(x+1\right)+1\right]^2=0\\ \Leftrightarrow\left(x+1\right)+1=0\\ \Leftrightarrow x+2=0\Rightarrow x=-2\\ d,\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+3\right)+\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left[\left(x-1\right)\left(x+3\right)+1\right]=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\) 

\(\left(4B\right)\\ a,\\ \Leftrightarrow49-14x+x^2-4\left(x+25\right)^2=0\\ \Leftrightarrow49-14x+x^2-4x^2-40x-100=0\\ \Leftrightarrow3x^2-54x-51=0\\ \Leftrightarrow-3\left(x^2+18x+17\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+17\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+17=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-17\end{matrix}\right.\\ b,\\ \Leftrightarrow4x^2\left(x^2-2x+1\right)-\left(4x^2+4x+1\right)=0\\ \Leftrightarrow x^2-6x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\) 

\(c,\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(2-x\right)=0\\ \Leftrightarrow\left(x+1\right)\left[\left(x^2-x+1\right)-\left(2-x\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x^1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\\x=-1\end{matrix}\right.\\ d,\\ \Leftrightarrow\left(x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

17 tháng 2 2022

hum được học on mà lắm bài nên ít tg làm 

18 tháng 5 2019

hệ phương trình (*) trở thành :

21 tháng 6 2019

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

14 tháng 8 2023

Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c 

Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất;  nếu a < 0 thì em sẽ tìm giá trị lớn nhất 

Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất

Bước 3: kết luận

                  Giải:

A = 3\(x^2\) - 5\(x\) + 3  Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất

A = 3\(x^2\) - 5\(x\) + 3 

A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\))  + \(\dfrac{11}{12}\) 

A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) 

Vì (\(x-\dfrac{5}{6}\))2 ≥ 0  ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)

Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)

 

18 tháng 9 2017

mấu chốt vấn không phải cái HD

mà là đề bài bắt làm cái gì

18 tháng 9 2017

Nhìn cái HD là ra đề bài đề bắt rút gọn BT đó ba =)))ngonhuminh

A.Lý thuyết về dấu tam thức bậc hai

1. Tam thức bậc hai (một ẩn) là đa thức có dạng f(x) = ax2 + bx  + c trong đó x là biến a, b, c là các số đã cho, với a ≠ 0.

Định lí. Cho tam thức bậc hai f(x) = ax2 + bx  + c (a ≠ 0)

có biệt thức    ∆ = b2 – 4ac.

- Nếu ∆ < 0 thì với mọi x, f(x) có cùng dấu với hệ số a.

- Nếu ∆ = 0 thì f(x) có nghiệm kép x = , với mọi x ≠ , f(x) có cùng dấu với hệ số a.

- Nếu ∆ > 0, f(x) có 2 nghiệm x1, x(x< x2) và luôn cùng dấu với hệ số a với mọi x ngoài đoạn [x1; x2] và luôn trái dấu với hệ số a với mọi x trong đoạn (x1; x2).

2. Bất phương trình bậc hai một ẩn.

Là mệnh đề chứa một biến có một trong các dạng:

ax2 + bx  + c > 0, ax2 + bx  + c < 0, ax2 + bx  + c ≥ 0, ax2 + bx  + c ≤ 0               trong đó vế trái là một tam thức bậc hai.

Để giải bất phương trình bậc hai một ẩn ta dùng định lí về dấu của tam thức bậc hai.

22 tháng 6 2017

Ta có: 

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)

Ta lại có:

\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1) và (2) dấu = xảy ra khi \(x=-1\)

6 tháng 4 2017

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

hệ phương trình (*) trở thành :

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ u = 9 7 ⇒ 1 x = 9 7 ⇒ x = 7 9 + v = 2 7 ⇒ 1 y − 2 7 ⇒ y − 7 2

Vậy hệ phương trình có nghiệm (7/9;7/2)

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

28 tháng 6 2018

\(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\\\sqrt{x-1}=-3\left(vl\right)\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{2\right\}\)