K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2024

Ta có \(BC=BD+CD=35\left(cm\right)\)

Áp dụng định lý phân giác:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\)

\(\Rightarrow AB=\dfrac{3}{4}AC\)

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2\Rightarrow\dfrac{9}{16}AC^2+AC^2=35^2\)

\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\)

\(\Rightarrow AB=\dfrac{3}{4}AC=21\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ABC:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{63}{5}\left(cm\right)\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\dfrac{84}{5}\left(cm\right)\)

\(HD=BD-BH=\dfrac{12}{5}\left(cm\right)\)

Áp dụng Pitago trong tam giác vuông ADH:

\(AD=\sqrt{AH^2+HD^2}=12\sqrt{2}\left(cm\right)\)

NV
10 tháng 8 2024

loading...

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)

8 tháng 4 2019

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

b: BC=căn 3^2+5^2=căn 34(cm)

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/5=căn 34/8

=>BD=3/8*căn34(cm)

c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)

a: \(BC=\sqrt{18^2+24^2}=30\left(mm\right)\)=3(cm)

Xét ΔACB có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=2,4/8=0,3

=>AD=0,9cm; CD=1,5cm

b: Xét ΔCED và ΔCAB có

CE/CA=CD/CB

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>góc CED=góc CAB=90 độ

d: ΔCED đồng dạng với ΔCAB

=>ED/AB=CE/CA

=>ED/1,8=1,2/2,4

=>ED=0,9cm

c: ΔCED đồng dạng với ΔCAB

=>\(\dfrac{S_{CED}}{S_{CAB}}=\left(\dfrac{CE}{CA}\right)^2=\dfrac{1}{4}\)

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Xét ΔABC có

AD là đường phân giác trong ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)

Do đó: \(\dfrac{BD}{3}=\dfrac{5}{7}\)

hay \(BD=\dfrac{15}{7}cm\)

Vậy: \(BD=\dfrac{15}{7}cm\)

19 tháng 2 2021

cảm ơn bạn

25 tháng 12 2019