Cho a, b là các số thực dương thỏa mãn a + b = 1. Chứng minh rằng (1+1/a)(1+1)>=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=1+\frac{b}{a}+\frac{c}{a}+1+\frac{a}{b}+\frac{c}{b}+1+\frac{a}{c}+\frac{b}{c}.\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Theo Cosy với a;b;c >0
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\);\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}=2\);\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=2\)
Do đó: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3+2+2+2=9\)đpcm.
Dấu "=" khi a=b=c=1/3.
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)
\(\Leftrightarrow1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\ge9\)
Lại có:\(\dfrac{1}{b}+\dfrac{1}{a}\ge\dfrac{4}{a+b}=4\)
\(ab\le\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)\(\Rightarrow\dfrac{1}{ab}\ge\dfrac{1}{\dfrac{1}{4}}=4\)
\(\Rightarrow1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\ge1+4+4=9\left(\text{đ}pcm\right)\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}=3+2+2+2=9\)
Dấu bằng của BĐT xảy ra khi a = b= c = 1/3
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)
Theo BĐT Cauchy ta có:
\(\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\\a+b+c\ge3\sqrt[3]{abc}\end{matrix}\right.\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge\frac{3}{\sqrt[3]{abc}}.3\sqrt[3]{abc}=9\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
a, \(\left(a+1\right)^2\ge4a\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)
b, Áp dụng bđt Cô-si
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(=8\sqrt{abc}=8\)(ĐPCM)
Dấu "=" khi a = b = c =1
a, \(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1>4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)
b, Áp dụng bất đẳng thức trên ta có :
( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)
Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.
Khi đó : a + 1 > \(2\sqrt{a}\)
Tương tự ta có :
b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)
=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)
Ta CM : \(\dfrac{1}{xy}\)\(\geq\) \(\dfrac{4}{\left(x+y\right)^2}\) \(\Leftrightarrow\) (x+y)2 \(\geq\) 4xy \(\Leftrightarrow\) x2+2xy+y2\(\geq\) 4xy
\(\Leftrightarrow\) x2+2xy+y2-4xy \(\geq \) 0 \(\Leftrightarrow\) x2-2xy+y2 \(\geq\) 0 \(\Leftrightarrow\) (x-y)2 \(\geq\) 0 (luôn đúng)
Dấu '=' khi và chỉ khi x=y
Ta có: (1+\(\dfrac{1}{a}\))(1+\(\dfrac{1}{b}\)) = 1+\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)+\(\dfrac{1}{ab}\) = 1+ \(\dfrac{a+b}{ab}\)+\(\dfrac{1}{ab}\)=1+\(\dfrac{1}{ab}\)+\(\dfrac{1}{ab}\)
= 1+ 2.\(\dfrac{1}{ab}\)
Áp dụng BĐT vừa chứng minh trên ta được:
1+2.\(\dfrac{1}{ab}\)\(\geq\) 1+2.\(\dfrac{4}{\left(a+b\right)^2}\)=1+2.4=1+8=9
Từ đó suy ra (1+\(\dfrac{1}{a}\))(1+\(\dfrac{1}{b}\)) \(\geq\) 9
Dấu'=' xảy ra khi và chỉ khi a=b=0,5
Đề là \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\) với đúng chứ em?
thầy trả lời giúp em với