Cho tam giác ABC cân tại A.AM là tia phân giác.C/m C,M,B thẳng hàng(ko sử dụng t/c góc ngoài)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N I E
a)
*AMN cân
Vì t/g ABC cân tại A (gt)
=>^B=^C
Do đó: ^ABM=^ACN
Xét t/ABM và t/gACN có
góc ^A chung
AB=AC ( vì t/g ABC cân)
^ABM=^ACN (cmt)
Nên t/gABM=t/gACN (g.c.g)
=>AM=AN (2 cạnh tương ứng = nhau)
=> tam giác ANM cân
*MN//BC
Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o
tam giác ABC cân nên=>^A+^B+^C=180o
Mà ^B=^C
^ANM=^AM
Nên: ^C=^ANM
=>^MCN=^ANM
Mà 2 góc này lại ở vị trí so le trong
Do đó MN//BC (đpcm)
b)
Vì t/g ABC cân tại A
^ABC=^ACB
Mà BM là tia p/g của ^ABC
CN là tia p/g của ^ACB
do đó: ^MBC=^NCB
=> tam giác EBC cân tại E
Xét t/g AEB và t/g AEC có:
AB=AC (vì t/g ABC cân)
^ABM=^ACN (cmt)
=BE=CE (EBC cân)
=> t/gAEB=t/gAEC(c.g.c)
=>^BAE=^CAE (2 góc tương ứng = nhau)
Do đó AE là tia phân giác của t/gBAC (1)
Xét t/g AIB và t/gAIC có
AB=AC ( vì t/g ABC cân)
IB=IC (I là trung điểm BC)
=>tam giác AIB=t/gAIC (c.g.c)
=>^IAB=^IAC (2 góc tương ứng = nhau)
Do đó:AI là tia phân giác của ^BAC (2)
Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).
A B C M N E I
a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)
\(\Rightarrow\) \(AB=AC\) hay \(\frac{1}{2}AB=\frac{1}{2}AC\) và \(BM\)và \(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)
\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)
Xét \(\Delta AMN\)có\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)
b)Có
- \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
- \(N\)là trung điểm của \(AB\)(....)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN//BC\left(dpcm\right)\)
Ta có : tam giác ABC cân tại A có AM là tia phân giác
=> AM vừa là phân giác vừa là đường cao
=> AM vuông góc vs BC
=> C,M,B thẳng hàng