K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2024

Ta có : tam giác ABC cân tại A có AM là tia phân giác 

=> AM vừa là phân giác vừa là đường cao 

=> AM vuông góc vs BC 

=> C,M,B thẳng hàng

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

28 tháng 4 2016

vì nó thẳng hàng nên thẳng hàng đấy huấn ạ

A B C M N E I

a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)

\(\Rightarrow\) \(AB=AC\)  hay \(\frac{1}{2}AB=\frac{1}{2}AC\)  và   \(BM\)\(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)

\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)

Xét \(\Delta AMN\)\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)

b)Có 

  • \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
  • \(N\)là trung điểm của \(AB\)(....)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN//BC\left(dpcm\right)\)