K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 1 2022

trong phòng có 5 người thì số người quen của mỗi người có thể quen từ 0 đến 4 người

mà không thể xuất hiện 1 người qune 0 người và 1 người quen 4 người được

thế nên số người quen của 1 người chỉ là 4 trong 5 giá trị

nên theo nguyên lí dirichlet thì tông tại 2 người có cùng số người quen.

Tổng quát bài toán, trong n người bất kỳ luôn tồn tại hai người có cùng số người quen

24 tháng 8 2020

đúng r bạn ạ, mk học đt toán lớp 6 và cô đt mình dạy cái này.

Học cùng lớp thì phải quen nhau hết nên n người đều quen với n-1 người

22 tháng 4 2017

mình nghĩ làm như thế này:

ta chia n người đó vào n phòng tương ứng từ 0 đến n-1 phòng.

mà n chia n-1=1(dư 1 )  { cho phép chia này tớ nghĩ thế }.vay theo nguyên lí dirichle trong phòng có n người luôn tìm được 2 người có số người quen bằng nhau

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

Lời giải:

Số người quen của 1 người có thể chạy từ $0$ đến $n-1$ người.

Tuy nhiên, nếu 1 người quen 0 người thì sẽ không có ai trong số những người còn lại quen $n-1$ người và ngược lại, nếu 1 người quen $n-1$ người thì sẽ không có ai trong số những người còn lại quen $0$ người.

Tức là, Số người quen của 1 người trong nhóm $n$ người đó có thể chạy từ $0$ đến $n-2$, hoặc từ $1$ đến $n-1$

Coi đây như những chiếc lồng thỏ, thì có $n-1$ lồng.

Có $n$ người.

Theo nguyên lý Dirichlet, tồn tại $[\frac{n}{n-1}]+1=2$ người có số người quen giống nhau.

Ta có đpcm.

19 tháng 11 2018

Vì quan hệ quen biết có tính chất 2 chiều: Nếu a quen b thì b quen a

Ta chia n người đã cho vào n nhóm:

+Nhóm 0: Gồm những người có số người quen là 0 ( ko quen ai trong số n-1 người còn lại)

+Nhóm 1: Gồm những người có số người quen là 1

+Nhóm 2: Gồm những người có số người quen là 2

.....................

+Nhóm n-1: gồm những người có số người quen là n-1 ( quen cả n-1 người còn lại)

Ta thấy nhóm 0 và nhóm n-1 ko đồng thời xảy ra vì nếu cóa người quen cả n-1 người còn lại thì ko thể có người nào ko quen ai trong n-1 người còn lại

Như vậy có n người (n\(\geq\)2) mà chỉ có nhiều nhất n-1 nhóm đó là: Nhóm 0;1;2;...;n-2 hoặc nhóm 1;2;3;...;n-1. Nên phải tồn tại ít nhất 2 người cùng 1 nhóm 

Tức là tồn tại ít nhất 2 người có số người quen như nhau. (ĐPCM)

k and kb nha!!!!!

26 tháng 1 2016

có tất cả số người là;

               (9999+10).9990:2=49994955(người)

Vậy có số tiếng gọi là;

               49994955.49994954:2=1249747737728535(tiếng gọi)

 

26 tháng 1 2016

xin lỗi đáp án không phải là 1

2 tháng 11 2016

Xét A là 1 người bất kỳ trong phòng

\(\Rightarrow\)A quen ít nhất 67 người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là 32
Trong phòng còn lại 68 người. \(\Rightarrow\)gọi B là 1 người quen A \(\Rightarrow\) có nhiều nhất 32 người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là 34 \(\Rightarrow\)gọi C là 1 người quen AB \(\Rightarrow\) C không quen nhiều nhất 32 người trong phòng
\(\Rightarrow\)trong phòng còn lại 44 người \(\Rightarrow\)ngoài A,B,CA,B,C còn 1 người giả sử là D,khi đó A,B,C,DA,B,C,D đôi 1 quen nhau(đpcm)

1 tháng 11 2016

Ai giả đc bài này rồi giúp mình với

2 tháng 11 2016

á dù con cúc

3 tháng 11 2016

Do trong phòng có 100 người, mỗi người quen it nhất 67 người còn lại nên số người mà người đó không quen nhiều nhất là:

                        100-67-1= 32( người)

Ta giả sử 1 người bất kỳ trong 100 người đó là A. Nếu ta loại những người mà A không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68 người( trong đó có A).

Ta lại giả sử 1 trong 68 người còn lại trong phòng( khác A) là B. Nếu ta loại đi những người mà B không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68-32=36( người) trong đó có A và B.

............................. 36......................................(khác A,B) là C.............................................C................................................

.....................................36-32=4( người) trong đó có A,B và C.

Trong 4 người còn lại ta giả sử người khác A,B,C là D thì khi đó trong phòng có 4 người: A,B,C và D suy ra A,B,C,D đôi một quen nhau. Do đó tìm được 4 người mà 2 người bất kì trong số đó đều quen nhau( đpcm)