K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AQHP có \(\widehat{AQH}=\widehat{APH}=\widehat{PAQ}=90^0\)

nên AQHP là hình chữ nhật

b: ΔCQH vuông tại Q

mà QK là đường trung tuyến

nên KQ=KH=KC

Xét ΔKQH có KQ=KH

nên ΔKQH cân tại K

Ta có: AQHP là hình chữ nhật

=>AH cắt QP tại trung điểm của mỗi đường và AH=PQ

=>O là trung điểm chung của AH và QP

=>OA=OH=OQ=OP

Ta có: OQ=OH

=>O nằm trên đường trung trực của QH(1)

Ta có: KQ=KH

=>K nằm trên đường trung trực của QH(2)

Từ (1),(2) suy ra OK là đường trung trực của QH

c: Ta có: OK là đường trung trực của QH

=>OK\(\perp\)QH

mà AC\(\perp\)QH

nên OK//AC

=>ACKO là hình thang

Để ACKO là hình thang cân thì \(\widehat{KCA}=\widehat{OAC}\)

=>\(\widehat{HAC}=\widehat{HCA}\)

=>ΔHAC cân tại H

 mà ΔHAC vuông cân tại H

nên \(\widehat{ACH}=45^0\)

=>\(\widehat{ACB}=45^0\)

21 tháng 8 2016

Xét tam giác ABC có :

\(bc^2\)=\(5^2\)=25

\(ab^2\)+\(ac^2\)=\(3^2\)+\(4^2\)=9+16=25   

Suy ra:\(bc^2=ab^2+ac^2\)(định lí py-ta-go đảo)

14 tháng 12 2022

a: Xét ΔCAB có CE/CA=CD/CB

nên ED//AB và ED=AB/2

=>AEDB là hình thang

mà góc EAB=90 độ

nênAEDB là hình thang vuông

b: Xét tứ giác ABKC có

D là trung điểm chung của AK và BC

góc BAC=90 độ

Do đó: ABKC là hình chữ nhật

25 tháng 8 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hcn

b: AIHK là hcn

=>góc AIK=góc AHK=góc C

=>ΔAIK đồng dạng với ΔACB

a: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

Suy ra: AH=IK

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AH^2=AI\cdot AB\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AH^2=AK\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

hay AI/AC=AK/AB

Xét ΔAIK vuông tại A và ΔACB vuông tại A có

AI/AC=AK/AB

Do đó: ΔAIK\(\sim\)ΔACB

10 tháng 2 2023

tại sao AH^2 = AI. AB