K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2024

giúp mình với

3 tháng 1 2021

a) Xét 2 \(\Delta MNQ\)và \(\Delta PKQ\) có:

\(\hept{\begin{cases}KQ=QN\left(gt\right)\\PQ=QM\left(gt\right)\\\widehat{KQP}=\widehat{NQM\left(đ^2\right)}\end{cases}}\)

\(\Rightarrow\Delta MNQ=\Delta PKQ\left(c.g.c\right)\left(ĐPCM\right)\)

b) theo a, ta có : \(\Delta MNQ=\Delta PKQ\)

\(\Rightarrow\widehat{QPK}=\widehat{QMN}\)( 2 góc tương ứng )

Mà 2 góc này nằm ở vị trí so le trong của MN và PK :

\(\Rightarrow MN//PK\left(DHNB\right)\left(ĐPCM\right)\)

25 tháng 11 2023

Em viết đề chính xác lại nhé. Đề sai tùm lum rồi!

9 tháng 2 2020

a, xét tam giác QIN và tam giác NKQ có L QN chung

góc MQN = góc MNQ do tam giác MNQ cân tại M (gT)

góc QIN = góc NKQ = 90

=> tam giác QIN = tam giác NKQ (ch-gn)

b,  tam giác QIN = tam giác NKQ (Câu a)

=> QI = NK (đn)

QI + MI = MQ

NK + MK = MN 

MN = MQ do tam giác MNQ cân tại M (gt)

=> MI = MK 

=> tam giác MIK cân tại M (đn)

c, xét tam giác MIH  và tam giác MKH có : MH chung

IM = MK (Câu b)

góc MIH = gics MKH = 90

=> tam giác MIH = tam giác MKH (ch-cgv)

d, tam giác MIK cân tại M (Câu b)=> góc MIK = (180 - góc IMK) : 2(tc)

tam giác MNQ cân tại M (gt) => gics MQN = (190 - góc IMK) : 2(tc)

=> góc MIK = góc MQN mà 2 góc này đồng vị

=> IK // QN (tc)

9 tháng 2 2020

M N Q K I H

a. Vì \(\Delta MNQ\) cân tại M => \(MN=MQ,\widehat{MQN}=\widehat{MNQ}\)

Xét 2 tam giác vuông là \(\Delta NIQ\) và \(\Delta QKN\) ta có:

Cạnh chung NQ, \(\widehat{KNQ}=\widehat{IQN}\) ( vì \(\widehat{MNQ}=\widehat{MQN}\) )

\(\Rightarrow\Delta NIQ=\Delta QKN\)( cạnh huyền - góc nhọn )

b. Vì \(\Delta NIQ=\Delta QKN\Rightarrow IQ=KN\) ( 2 cạnh tương ứng )

Mà \(MN=MQ\Rightarrow MN-NK=MQ-IQ\Rightarrow MK=MI\)

\(\Rightarrow\Delta MKI\) cân tại M. ( ĐPCM )

c. Xét 2 tam giác vuông là \(\Delta MKH\) và \(\Delta MIH\) ta có:

\(MK=MI\left(cmt\right)\) và cạnh chung MH

\(\Rightarrow\Delta MKH=\Delta MIH\) ( cạnh huyền - cạnh góc vuông )

12 tháng 7 2015

b) Vì hai tam giác ở trên bằng nhau nên CD=AM=MB

Vì CD//AM hay CD//MB=> góc DCM=BMC(slt)

Xét tamg iasc MCD và CMB có

BM=CD(cmt)

góc DCM=BMC(cmt)

MC cạnh chung

vậy hai tam giác băng nhau theo trường hợp(c.g.c)

c) Vì tam giác MCD=CMB nên  góc DMC=BCM(góc tương ứng)

mà chúng ở vị trí so le trong nên MD//BC hay MN//BC.

và MD=BC, mà MN=1/2MD=> MN=BC/2

31 tháng 3 2020

a) Xét tam giác PNK vuông tại P và tam giác INK vuông tại I có:

\(\widehat{N}=\widehat{K}\)(tam giác MNK là tam giác cân)

NK:chung

Suy ra \(\Delta PNK=\Delta INK\)(cạnh huyền-góc nhọn)

=>PN=IK(1)

Mà do MNK cân tại M nên MN=MK(2)

Từ (1) và (2), suy ra MI=MP

b)Từ a) ta suy ra: \(\widehat{HNK}=\widehat{HKN}\)(hai góc tương ứng)<=> \(\widehat{IKH}=\widehat{PNH}\)

Xét tam giác PHN vuông tại P và tam giác IHK vuông tại I có:

\(NP=IK\left(cmt\right)\)

\(\widehat{IKH}=\widehat{PNH}\)(cmt)

Suy ra:....(cạnh góc vuông-góc nhọn kề)

=>HP=HI

Xét tam giác PMH và tam giác HMI có:

MH:chung

MP=MI(cmt)

HP=HI(cmt)

Suy ra:....(c-c-c)

=> \(\widehat{PMH}=\widehat{IMH}\)(hai góc tương ứng )

=>MH là tia phân giác của góc M

c) Từ b) suy ra MP=MI(2 cạnh tương ứng)

=>PMI là tam giác cân

Xét tam giác PMI có:

\(\widehat{P}=\widehat{I}=\frac{180^o-\widehat{M}}{2}\left(1\right)\)

Xét tam giác MNK có:

\(\widehat{K}=\widehat{N}=\frac{180^o-\widehat{M}}{2}\left(2\right)\)

=>\(\widehat{K}=\widehat{N}=\widehat{P}=\widehat{I}\)

Mà các cặp góc này ở vị trí đồng vị nên PI//NK