K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

undefined

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Xét tam giác \(ABC\) có \(DE//BC\) nên theo định lí Thales ta có:

\(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}} \Rightarrow \frac{x}{2} = \frac{6}{3}\). Do đó, \(x = \frac{{6.2}}{3} = 4\).

Vậy \(x = 4\).

Chọn A

a: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{BM}=\dfrac{4}{6}=\dfrac{2}{3}\)

b: Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\left(1\right)\)

Xét ΔAMC có 

ME là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Ta có: M là trung điểm của BC

nên MB=MC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

c: Xét ΔABC có 

\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC

9 tháng 1 2022

bt1: 

h1=16

Chọn D

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Vì \(DE//BC\) nên theo định lí Thales và hệ quả của định lí Thales ta có:

\(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}};\frac{{BD}}{{AD}} = \frac{{EC}}{{AE}};\frac{{BD}}{{AB}} = \frac{{EC}}{{AC}};\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{{DE}}{{BC}}\).

a: Xét ΔIAB có ID là phân giác

nên DA/DB=AI/IB=AI/IC

Xét ΔIAC có IE là phân gíac

nên AE/EC=AI/IC

=>DA/DB=EA/EC

=>DE//BC

b: Xét ΔABI có DO//BI

nên DO/BI=AO/AI

Xét ΔACI co EO//IC

nên EO/IC=AO/AI

=>DO/BI=EO/IC

mà BI=IC

nên DO=EO

=>O là trung điểm của DE

18 tháng 4 2018