K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

8n+19 chia hết 4n+1

,4n+1 chia hết 4n+1=>2(4n+1)=8n+2 chia hết 4n+1

=>(8n+19-8n-2) chia hết 4n+1=>17 chia hết 4n+1=>4n+1 E Ư(17)=1;17;-1;-17 và n E N

=>n=0;4

2 tháng 3 2022

ai kb ko kết đi chờ chi

1 tháng 11 2024

2024 r

Nên mình ko giải 

 

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

18 tháng 7 2016

1/ Do trong 6 số nguyên liên tiếp bất kì luôn có 3 số chẵn gồm 2 số chia hết cho 2 và ít nhất 1 số chia hết cho 4 nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 (1)

Do trong 6 số nguyên liên tiếp luôn có 2 số chia hết cho 3 => tích 6 số nguyên liên tiếp luôn chia hết cho 9 (2)

Do trong 6 số nguyên liên tiếp luôn có ít nhất 1 số chia hết cho 5 => tích 6 số nguyên liên tiếp luôn chia hết cho 5 (3)

Từ (1); (2); (3) do 16; 9; 5 nguyên tố cùng nhau từng đôi một nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 x 9 x 5 hay 720 (đpcm)

2/ Do trong 3 số chẵn liên tiếp luôn có 2 số chia hết cho 1 và ít nhất 1 số chia hết cho 4 => tích của chúng chia hết cho 16

Do trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3 nên tích của chúng chia hết cho 3

=> tích 3 số chẵn liên tiếp chia hết cho 2; 4; 6; 8; 12; 16; 24; 48

17 tháng 5 2017

Để phân số nhận giá trị nguyên 

=> 8n - 3 chia hết cho 4n + 2

8n + 4 - 4 - 3 chia hết cho 4n + 2

2(4n + 2) - 7 chia hết cho 4n + 2

=> 7 chia hết cho 4n + 2

=> 4n + 2 thuộc Ư(7) = {1 ; -1 ;7 ; -7}

Xét các giá trị trên , ta có bảng sau 

4n + 21-17-7
n-1/4 -3/4 5/4 -9/4
17 tháng 5 2017

Để 8n-3/4n+3 có giá trị là số nguyên thì 8n-3:4n+3

Ta có: 8n-3:4n+3

       =>8n+6-9:4n+3

       =>2(4n+3)-9:4n+3

   Mà 2(4n+3):4n+3

  =>9:4n+3

  =>4n+3 thuộc Ư(9)=-1;1;-3;3;-9;9

Nếu  4n+3=-1 thì n=-1

Nếu  4n+3=1 thì -0.5(loại)

Nếu  4n+3=-3 thì n=-1.5(loại)

Nếu  4n+3=3 thì n=0

Nếu 4n+3=-9 thì n=-3

Nếu 4n+3=9 thì n=1.5(loại)

Vậy n=-1;-3;0

27 tháng 2 2016

(4n-5)/(n-3)= (4(n-3)+7)/(n-3)=4+7/(n-3) 
để 4n-5 chia hết cho n-3 thì kết quả của phép chia này phải là số nguyên=> 7/(n-3) phải là số nguyên. 
7/(n-3) là số nguyên khi n-3 thuộc Ư(7).Mà Ư(7)=(-1;1;-7;7) 
=> 
TH1:n-3=-1=>n=-1+3=2 
TH2:n-3=1=>n=1+3=4 
TH3:n-3=-7=>n=-7+3=-4 
TH4:n-3=7=>n=7+3=10 
Vậy để 4n-5 chia hết cho n-3 thì n thuộc {2;4;-4;10)

27 tháng 2 2016

4n-5 chia hết cho n-3

4n-12+17 chia hết cho n-3

4(n-3)+17 chia hết cho n-3

=>17 chia hết cho n-3 hay (n-3)EƯ(17)={1;-1;17;-17}

=>nE{4;2;20;-14}

19 tháng 12 2018

ta có 10-2n\(⋮\)n-1

\(\Rightarrow\)12-(2n-2)\(⋮\)n-1

mà 2n-2\(⋮\)n-1

\(\Rightarrow\)12\(⋮\)n-1\(\Rightarrow\)n-1\(\in\)Ư(12)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)4;\(\pm\)6;\(\pm\)12)


 

n-11-12-23-34-45-56-612-12
n203-14-25-36-47-513-11
6 tháng 9 2023

 Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\)

 Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.

 Ta có đpcm.

6 tháng 9 2023

mk ko có hỉu