K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(1)=g(2)

=>\(2\cdot1^2+a\cdot1+4=2^2-5\cdot2+b\)

=>a+6=b-6

=>a=b-12

f(-1)=g(5)

=>\(2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5+b\)

=>-a+4+2=b

=>-a+6=b

=>-b+12+6=b

=>-2b=-18

=>b=9

=>a=9-12=-3

31 tháng 7 2024

thay x = 1 vào f(x), có

f(1) =2.1+ 1a + 4

f(1) =2 + a + 4

f(1) =a + 6

=> f(6) =a + 6

thay x = 2 vào g(x) , có

g(2) =22 - 5.2 + b

g(2) =4 - 10 + b

g(2) =-6 + b

=> g(2) = -6 + b

thay x = -1 vào f(x), có

f(-1) =2.(-1)2 - 1a + 4

f(-1) = 2 + a + 4

f(-1) = 6 + a

=> f(-1) = 6 + a

thay x = 5 vào g(x) , có

g(5) =(5)2 - 5.(5) + b

g(5) = 25 - 25 + b

g(5) = + b

vậy g(5)= b

có f(1) = g(2)

=> a + 6 = -6 + b

=> a + b = 0

=> a = -b hoặc b = -a

có f(-1) = g(5)

=> 6 + a = b

=> 6 = b - a

=> 6 = b - (-b)

=> 6 = b + b

=> b = 3 

=> a = -b = -3

4 tháng 4 2022

`Answer:`

Để cho `f(1)=g(2)` thì: `2. 1^2 + a.1+4=2^2 - 5.2-b`

`<=>2.1+a+4=4-10-b`

`<=>a+6=-6-b (1)`

Để cho `f(-1)=g(5)` thì: `2.(-1)^2 +a.(-1)+4=5^2 - 5.5-b`

`<=>2.1-a+4=25-25-b`

`<=>6-a=-b (2)`

Cộng các vế tương ứng từ `(1)(2)`, ta được: `(a+b)+(6-a)=(-6-b)+(-b)`

`<=>a+6+6-a=-6-b-b`

`<=>12=-6-2b`

`<=>b=-9`

Mà `6-a=-b=>6-a=9`

`<=>a=-3`

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:
$f(1)=g(2)$

$\Leftrightarrow a+6=-6-b$

$\Leftrightarrow a=-12-b(1)$

$f(-1)=g(5)$

$\Leftrightarrow 6-a=-b$

$\Leftrightarrow a=6+b(2)$

Từ $(1);(2)\Rightarrow -12-b=6+b$

$\Rightarrow b=-9$

$a=6+b=6-9=-3$

Vậy $a=-3; b=-9$

5 tháng 5 2018

a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3

g(-1) = 0,5; g(-2) = 2; g(0) = 0

b) f(x) = 2 ⇒ x = 1

g(x) = 2 ⇒ x = 2 hoặc x = -2

21 tháng 10 2023

a: f(a)=g(a)

=>5a-3=-1/2a+1

=>5,5a=4

=>\(a=\dfrac{4}{5.5}=\dfrac{8}{11}\)

b: f(b-2)=g(2b+4)

=>\(5\left(b-2\right)-3=-\dfrac{1}{2}\left(2b+4\right)+1\)

=>\(5b-13=-b-2+1=-b-1\)

=>6b=12

=>b=2

21 tháng 10 2023

f(a) = g(a)

⇔ 5a - 3 = -a/2 + 1

⇔ 5a + a/2 = 1 + 3

⇔ 11a/2 = 4

⇔ 11a = 8

⇔ a = 8/11

Vậy a = 8/11 thì f(a) = g(a)

b) f(b - 2) = g(2b + 4)

⇔ 5.(b - 2) - 3 = -(2b + 4)/2 + 1

⇔ 5b - 10 - 3 = -b - 2 + 1

⇔ 5b + b = 1 + 13

⇔ 6b = 14

⇔ b = 7/3

Vậy b = 7/3 thì f(b - 2) = g(2b + 4)

16 tháng 6 2021

a) * Ta có : f(0) = 2 ; g(0) = 2 => f(0) = g(0) 

f(1) = 3 ; g(1) = 3 => f(1) = g(1) ; 

f(-1) = 1 ; g(-1) = 1 =>  f(-1) = g(-1) 

f(2) = 34 ; g(2) = 34 => f(2) = g(2)

f(-2) = -30 ; g(-2) = - 30 => f(-2)  = f(2)

b) Nhận thấy f(3) = 245 ; g(3) = 125

=> f(3) > g(3) 

=> f(x) \(\ne\) g(x)

10 tháng 12 2019

1111111

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "