Cho a,b,c>0.TM: a^2+b^2+c^2=abc.Max P= a/a^2+bc + b/b^2+ca + c/c^2+ab
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu hỏi liên quan
![](https://rs.olm.vn/images/avt/0.png?1311)
TA
1 tháng 7 2017
Ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\) \(\Rightarrow a+b+c\ge\sqrt{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
16 tháng 6 2020
\(A=\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{ab}}\right)\le\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)^2}{6abc}\le\frac{ab+bc+ca}{2abc}\le\frac{a^2+b^2+c^2}{2abc}=\frac{1}{2}\)
dấu "=" xảy ra khi \(a=b=c=3\)