K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Trả lời hộ mình đi

1 tháng 7 2017

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)

2 tháng 1 2018

post ít một thôi

26 tháng 10 2017

@Ace Legona giúp mình

27 tháng 10 2017

mai mình giải nhé giờ mới onl mà muộn rồi

16 tháng 6 2020

\(A=\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{ab}}\right)\le\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)^2}{6abc}\le\frac{ab+bc+ca}{2abc}\le\frac{a^2+b^2+c^2}{2abc}=\frac{1}{2}\)

dấu "=" xảy ra khi \(a=b=c=3\)