K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

Đặt: \(\dfrac{x}{3}=\dfrac{y}{5}=k=>\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

Mà:

\(2x^2+y^2=43\\ =>2\cdot\left(3k\right)^2+\left(5k\right)^2=43\\ =>18k^2+25k^2=43\\ =>43k^2=43\\ =>k^2=1\\ =>k=\pm1\\ TH1:k=1=>\left\{{}\begin{matrix}x=3\cdot1=3\\y=5\cdot1=5\end{matrix}\right.\\ TH2:k=-1=>\left\{{}\begin{matrix}x=3\cdot\left(-1\right)=-3\\y=5\cdot\left(-1\right)=-5\end{matrix}\right.\)

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

\(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\x-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=3\left(x+y+1\right)\\2\left(x-3y-5\right)=2x-y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y-3x-3y=3\\2x-6y-10-2x+y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-4y=3\\-5y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-2\\x+4y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-2\\x=-3-4y=-3-4\cdot\left(-2\right)=8-3=5\end{matrix}\right.\)

24 tháng 9 2017

ĐK:  y − 2 x + 1 ≥ 0 , 4 x + y + 5 ≥ 0 , x + 2 y − 2 ≥ 0 , x ≤ 1

T H 1 :   y − 2 x + 1 = 0 3 − 3 x = 0 ⇔ x = 1 y = 1 ⇒ 0 = 0 − 1 = 10 − 1 ( k o   t / m ) T H 2 :   x ≠ 1 , y ≠ 1  

Đưa pt thứ nhất về dạng tích ta được

( x + y − 2 ) ( 2 x − y − 1 ) = x + y − 2 y − 2 x + 1 + 3 − 3 x ( x + y − 2 ) 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 = 0 ⇒ 1 y − 2 x + 1 + 3 − 3 x + y − 2 x + 1 > 0 ⇒ x + y − 2 = 0

Thay y= 2-x vào pt thứ 2 ta được  x 2 + x − 3 = 3 x + 7 − 2 − x

⇔ x 2 + x − 2 = 3 x + 7 − 1 + 2 − 2 − x ⇔ ( x + 2 ) ( x − 1 ) = 3 x + 6 3 x + 7 + 1 + 2 + x 2 + 2 − x ⇔ ( x + 2 ) 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x = 0

Do  x ≤ 1 ⇒ 3 3 x + 7 + 1 + 1 2 + 2 − x + 1 − x > 0

Vậy  x + 2 = 0 ⇔ x = − 2 ⇒ y = 4 (t/m)

8 tháng 5 2021

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)

 

 

15 tháng 3 2021

ai giải mk vs ạ

 

15 tháng 3 2021
answer-reply-imageBn tham khảo nhé!
3 tháng 2 2016

<=> xy+5x+3y+15=xy+8x+y+8                 <=> 3x-2y=7           <=>  9x-6y=21 <=> x=3            <=> x=3

      10xy+14x-15y-21=10xy+10x-12y-12            4x-3y=9                  8x-6y=18       8.3-6y=18           y=1

3 tháng 2 2016

moi hok lop 6 thoi

2 tháng 2 2016

em moi hoc lop 6 thoi sao lam duoc toan lop 9

2 tháng 2 2016

Grade 5 students only know how to do

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)