K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

$2(6x+7)^2(3x+4)(x+1)-12=0$

$\Leftrightarrow 2(36x^2+84x+49)(3x^2+7x+4)-12=0$

Đặt $3x^2+7x+4=a$ thì PT trở thành:

$2(12a+1)a-12=0$

$\Leftrightarrow 2a(12a+1)-12=0$

$\Leftrightarrow 24a^2+2a-12=0$

$\Leftrightarrow (24a^2-16a)+(18a-12)=0$

$\Leftrightarrow 8a(3a-2)+6(3a-2)=0$

$\Leftrightarrow (3a-2)(8a+6)=0$

$\Leftrightarrow (3a-2).2(4a+3)=0$

$\Leftrightarrow (3a-2)(4a+3)=0$

$\Rightarrow 3a-2=0$ hoặc $4a+3=0$

Nếu $3a-2=0$

$\Leftrightarrow 3(3x^2+7x+4)-2=0$

$\Leftrightarrow 9x^2+21x+10=0$

$\Leftrightarrow (3x+2)(3x+5)=0\Leftrightarrow x=\frac{-2}{3}$ hoặc $x=\frac{-5}{3}$

Nếu $4a+3=0$

$\Leftrightarrow 4(3x^2+7x+4)+3=0$

$\Leftrightarrow 12x^2+28x+19=0$

$\Leftrightarrow 12(x+\frac{7}{6})^2=\frac{-8}{3}<0$ (vô lý - loại)

Vậy..........

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

17 tháng 12 2021

a: Thay m=2 vào pt, ta được:

\(x^2-4x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)

28 tháng 1 2017

Đáp án D

21 tháng 12 2017

Đáp án: D.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6 tức \(a =  - 2;b = 6\)

\( - 2x + 6\).

b) Đa thức bậc hai có hệ số tự do bằng 4: \({x^2} + x + 4\).

c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0: \({x^4} + 0.{x^3} + {x^2} + 1 = {x^4} + {x^2} + 1\).

d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0: \({x^6} + 0.{x^5} + {x^4} + 0.{x^3} + {x^2} + 0.x = {x^6} + {x^4} + {x^2}\). 

NV
25 tháng 3 2022

a.

\(\left(m+1\right)x^2+4mx=2mx\)

\(\Leftrightarrow\left(m+1\right)x^2+2mx=0\)

b.

\(a=m+1\) ; \(b=2m\) ; \(c=0\)

c.

Với \(m=1\) pt trở thành:

\(2x^2+4x=0\Leftrightarrow2x\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

2 tháng 5 2021

1) Với m = 1 thì ta có:

\(x^2-2\left(1-1\right)x+2\cdot1-3=0\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

2) Ta có: \(\Delta^'=\left[-\left(m-1\right)\right]^2-\left(2m-3\right)\cdot1=m^2-2m+1-2m+3\)

\(=m^2-4m+4=\left(m-2\right)^2\ge0\left(\forall m\right)\)

=> PT luôn có nghiệm với mọi m

Theo hệ thức viet ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2-1=2m-3\\x_1x_2=2m-3\end{cases}}\)

\(\Rightarrow x_1+x_2-1=x_1x_2\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=0\)