sin3x+sinx=0 có bao nhiêu nghiệm thuộc đoạn [-2021π;2021π]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì các nghiệm của phương trình thuộc khoảng
(
0
;
2
π
)
nên nghiệm của phương trình là
Chọn A
Ta có sin3x+ cos2x- sinx= 0 ⇔ cos2x(2sinx+1)=0. Lưu ý trong khoảng (0;π), sinx > 0
Lời giải:
\(\sin 3x=-\sin x=\sin (-x)\)
\(\Leftrightarrow \left[\begin{matrix} 3x=-x+2k\pi\\ 3x=\pi +x+2t\pi\end{matrix}\right.\) với $t,k$ nguyên bất kỳ
\(\Leftrightarrow \left[\begin{matrix} x=\frac{k\pi}{2}\\ x=\frac{(2t+1)\pi}{2}\end{matrix}\right.\) với $k,t$ nguyên bất kỳ
Để $x\in [0; 100\pi]$ thì \(\left\{\begin{matrix} 0\leq \frac{k}{2}\leq 100\\ 0\leq \frac{2t+1}{2}\leq 100\end{matrix}\right.\)
Vì $t,k$ nguyên nên:
$k\in \left\{0;1;2;...;200\right\}$ $\rightarrow 201$ giá trị
$t\in \left\{0;1;2;,,,;99\right\}$ $\rightarrow 100$ giá trị
Vậy có: $201+100=301$ nghiệm.
Chọn C.
y' = -2cosxsinx + cosx = cosx(1 – 2sinx)
Vì . Vậy có 3 nghiệm thuộc khoảng (0; π).
\(sin3x+sinx=0\)
\(\Leftrightarrow3sinx-4sin^3x+sinx=0\)
\(\Leftrightarrow sinx\left(4-4sin^2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{2}+2k\pi\\x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\left(k\inℤ\right)\)
\(\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\inℤ\right)\)
Vậy pt đã cho có tập nghiệm là \(S=\left\{\dfrac{k\pi}{2}|k\inℤ\right\}\)
Cho \(-2021\pi\le\dfrac{k\pi}{2}\le2021\pi\Leftrightarrow-4042\le k\le4042\), mà \(k\inℤ\) nên có tổng cộng là \(8085\) nghiệm.