cho bieu thuc A=x2-1/3x+1 chung minh rangA>0 timf GTNN cua A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Ta thấy:
\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt với mọi $m$
b) Áp dụng định lý Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)
Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$
Ta có đpcm.
2/ x+y=2 => y=2-x
\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)
\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)
=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2
1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)
Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)
Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
<=> x=1 hoặc x=1
\(A=3x^2-x+6x-2-3x^2-3x-2x+7\)
\(=5\)
Vậy A không phụ thuộc vào x
\(B=\left(2x\right)^2-3^2-3x-4x^2+3x+1\)
\(=4x^2-9-3x-4x^2+3x+1\)
\(=-8\)
Vậy B không phụ thuộc vào biến x
A = ( x + 2 )( 3x - 1 ) - x( 3x + 3 ) - 2x + 7
= 3x2 + 5x - 2 - 3x2 - 3x - 2x + 7
= 5
Vậy A không phụ thuộc vào biến ( đpcm )
B = ( 2x - 3 )( 2x + 3 ) - x( 3 + 4x ) + 3x + 1
= [ ( 2x )2 - 32 ] - 3x - 4x2 + 3x + 1
= 4x2 - 9 - 4x2 + 1
= -8
Vậy B không phụ thuộc vào biến ( đpcm )
A=\(x^2-\frac{1}{3}x+1=x^2-2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}+1\)
\(=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\)
Do \(\left(x+\frac{1}{6}\right)^2\ge0\)nên \(\left(x+\frac{1}{6}\right)^2+\frac{35}{36}>0\)và GTNN của A là \(\frac{35}{36}\)
hình như cái khúc (x+1/2)^2 phải là (x-1/2)^2 chứ bạn mk k hỉu rõ bạn giải thích giùm mk nhé