Chứng tỏ số abcabc chia hết cho số 3,7,11,13 giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì abcabc = 1001 x abc
Mà 1001 lại chia hết cho 11
=> abcabc chia hết cho 11
Hội con 🐄 chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
abcabc = abc x 1001 .
= abc x (7 x 11 x 13 ) .
=> abcabc chia hết cho 7, cho 11 và cho 13 .
Tick nha !!!!
Ta có : abcabc = abc . 1001
mà 1001 \(⋮\) 7 \(\Rightarrow\) abcabc \(⋮\) 7
![](https://rs.olm.vn/images/avt/0.png?1311)
abcabc = abc.1001= abc.77.13 chia hết cho 13
=> số có dạng abcabc luôn chia hết cho 13
Ta có:abcabc=abc*77*13
=>abcabc chia hết cho 13
Vậy số có dạng abcabc luôn chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tổng 3 số tự nhiên liên tiếp có dạng: a + a + 1 + a + 2 = 3a + 3 = 3(a+1)
Vậy chia hết cho 3
b) Tổng 4 số tự nhiên liên tiếp có dạng: a + a + 1 + a + 2 + a + 3 = 4a+ 6 = 4(a+1) + 2
Vậy không chia hết cho 3
c) Tổng 5 số tự nhiên liên tiếp có dạng: a + a + 1 + a + 2 + a + 3 + a + 4 = 5a + 10 = 5(A+2)
Vậy chia hết cho 5
d)Xem lại đề
Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 ( chẳng hạn số 328328 chia hết cho 11 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\overline{abcabc}=1001\overline{abc}=11.99\overline{abc}\)
Vì \(11.99\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11
\(\Rightarrow\text{Điều phải chứng minh}\)
Vì x ⋮ 11 <=> (a0+a2+a4+...) - (a1+a3+a5+...) ⋮ 11
=> (c+a+b) - (b+c+a) = 0 ⋮ 11
Vậy dạng abcabc bao giờ cũng chia hết cho 11.
![](https://rs.olm.vn/images/avt/0.png?1311)
Abcabc= a100000+b10000+c1000+a100+b10+c
= a100100+b10010+c1001
= a.9100.11+b.910.11+c.11.91
= 11.(a.9100+b.910+c.91) chia hết cho 11
Vì đầu bài mình thấy sai nên sửa
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
abcabc=abc x 1001
mà 1001 chia jeets cho 3;7;11;13
nên abcabc chia hết cho 3;7;11;13