K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

undefined

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Bạn xem lại đề. Với $a=1,b=2$ PT vô nghiệm.

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)

a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)

\(=7xy+3x-2y-y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

23 tháng 5 2022

\(A=5xy-y^2-2xy+4xy+3x-2y\)

\(A=-y^2+7xy+3x-2y\)

\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)

\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(C=7a^2b-11b^2+9c^2\)

27 tháng 7 2023

A = 64a³ - 8b³

= (4a)³ - (2b)³

= (4a - 2b)(16a² - 8ab + 4b²)

= (4a - 2b)(16a² - 16ab + 4b² + 8ab)

= (4a - 2b)[(4a - 2b)² + 8ab]

= (-2).[(-2)² + 8.5]

= (-2).(4 + 40)

= (-2).44

= -88

27 tháng 7 2023

\(A=64a^3-8b^3=\left(4a\right)^3-\left(2b\right)^3=\left(4a-2b\right)\left(16a^2-8ab+4b^2\right)\)

Ta có: \(\left(4a-2b\right)^2=16a^2-16ab+4b^2=\left(-2\right)^2=4\)

\(\Leftrightarrow16a^2+4b^2=4+16ab=4+16.5=84\)

\(\Rightarrow A=\left(4a-2b\right)\left(16a^2-8ab+4b^2\right)\)

\(=-5\left(84-8.5\right)=44.-5=-220\)