K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2024

\(x\left(2x+\dfrac{-4}{10}\right)\) = 0

\(\left[{}\begin{matrix}x=0\\2x-\dfrac{4}{10}=10\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\2x=\dfrac{4}{10}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=\dfrac{4}{10}:2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x\) \(\in\) {0; \(\dfrac{1}{5}\)}

23 tháng 7 2024

\(x\left(2x+\dfrac{-4}{10}\right)=0\\ =>x\left(2x+\dfrac{-2}{5}\right)=0\\ =>2x\left(x-\dfrac{1}{5}\right)=0\\ TH1:2x=0\\ =>x=0\\ TH2:x-\dfrac{1}{5}=0\\ =>x=\dfrac{1}{5}\)

28 tháng 9 2018

\(\left(2x-4\right)\left(1-3x\right)=0\)

<=>  \(2\left(x-2\right)\left(1-3x\right)=0\)

<=>  \(\orbr{\begin{cases}x-2=0\\1-3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}\)

Vậy....

19 tháng 12 2018

\(\left(2x-4\right)\left(1-3x\right)=0\)

\(\Rightarrow2x-4=0\)hoặc\(1-3x=0\)

\(TH1:2x-4=0\)

                     \(2x=0+4\)

                     \(2x=4\)

                       \(x=4:2\)

                       \(x=2\)

\(TH2:1-3x=0\)

                    \(3x=1-0\)

                   \(3x=1\)

                      \(x=\frac{1}{3}\)

Vậy:\(x=2\)hoặc \(x=\frac{1}{3}\)

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

27 tháng 3 2018

+) Thay x = 5 vào phương trình  2 x − 3 = x + 2 x − 4  ta được

2.5 − 3 = 5 + 2 5 − 4   ⇔ 7 = 7 1 = 7

Vậy 5 là nghiệm của phương trình  2 x − 3 = x + 2 x − 4 khẳng định (I) đúng.

+) Tập nghiệm của phương trình 7 – x = 2x – 8 là x = 5 là khẳng định sai vì kết luận x = 5 không phải là tập nghiệm.

+) Ta có: 10 - 2x = 0 ⇔ 2x = 10 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {5}.

Do đó khẳng định (III) là đúng.

Vậy có hai mệnh đề đúng.

Đáp án cần chọn là: C

13 tháng 5 2018

1, Tìm các số x biết:\

a, -x-3/4=18/7

-x=18/7+3/4

-x=93/28

x=-93/28

Vậy...

17 tháng 12 2023

a, 7\(x\).(\(x\) - 10) = 0

   \(\left[{}\begin{matrix}7x=0\\x-10=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)

Vậy \(x\in\) {0; 10}

17 tháng 12 2023

b, 17.(3\(x\) - 6).(2\(x\) - 18) = 0

    \(\left[{}\begin{matrix}3x-6=0\\2x-18=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}3x=6\\2x-18=0\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=6:3\\x=18:2\end{matrix}\right.\)

       \(\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\)

19 tháng 8 2023

x đâu em? Trong đẳng thức thiếu x kìa

19 tháng 8 2023

tự động não đi bạn ơi

2 tháng 8 2023

chịu

19 tháng 12 2023

Chịu 

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

17 tháng 12 2023

a,  7\(x\).(2\(x\) + 10) = 0

        \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\){-5; 0}

          

         

17 tháng 12 2023

b, - 9\(x\) : (2\(x\) - 10) = 0

      - 9\(x\) = 0

           \(x\) = 0

c, (4 - \(x\)).(\(x\) + 3) = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

d, (\(x\) + 2023).(\(x\) - 2024) = 0

    \(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2023; 2024}

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên