bài 1. cho tam giác ABC. gọi M là trung điểm BC.I là trung điểm AM.tia BI cắt AC tại D.qua M ,kẻ đường thẳng song song với BD , cắt AC ở E.CM
a) AD=DE=EC
b) ID=1/4 BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔiAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
=>ΔIAB=ΔICD
b: Xét ΔBAC có
BI,AM là trung tuyến
BI cắt AM tại G
=>G là trọng tâm
=>BG=2/3BI=2/3ID
c: Xét ΔDAC có
DI,AN là trung tuyến
DI cắt AN tại K
=>K là trọng tâm
=>DK=2/3DI=2/3*1/2*DB=1/3DB
BG=2/3BI
=>BG=2/3*1/2BD=1/3BD
BG+GK+KD=BD
=>GK=1/3BD=DK=BG
a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)
b: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
ta có AM là trung tuyến => M là trung điểm BC
=> MC/BC = 1/2
từ M vẽ MH//BD (H thuộc AC)
xét tam giác AMH có MH//ID (MH//BD)
=> ID/MH = AI/AM (hệ quả thales)
vì I là trung điểm AM nên ID/MH = AI/AM =1/2 (1)
xét tam giác BDC có MH//BD
=> MH/BD = MC/BC = 1/2 (hệ quả thales) (2)
từ (1) và (2) => \(\frac{ID}{MH}.\left(\frac{MH}{BD}\right)=\frac{1}{4}\)(3)
DỄ CHỨNG MINH: AD=DH=HC (chứng minh D là tđ AH, H là tđ DC)
=> AD=1/3.AC=4cm (bn tính AC bằng pitago trong tam giác ABC)
xét tam giác ABD vuông tại A có
BD^2=AB^2+AD^2
=> BD= \(\sqrt{41}\)cm
thế vào (3) tính được ID => tính đc BI (cộng đoạn thẳng)
A B C D I M E
Gọi E là t/đ của DC
xét tg BDC có: M là t/đ của BC(gt) vf E là t/đ của DC(cách vẽ)=> ME là đg trung bình của tg BDC=>ME//BD. Mà I thuộc BD nên ID//ME
xét tg AME có: I là t/đ của AM (gt) và ID//ME(cmt)=> D là t/đ của AE
xét tg AME có: I là t/đ của AM và D là t/đ của AE=>ID là đg trung bình của tg AME=>ID=1/2ME
đến đây tự làm nha!
a: Xét ΔBDC có
M là trung điểm của CB
ME//BD
Do đó: E là trung điểm của CD
=>CE=ED
Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
=>AD=DE
mà DE=EC
nên AD=DE=EC
b: Xét ΔAME có I,D lần lượt là trung điểm của AM,AE
=>ID là đường trung bình của ΔAME
=>ME=2ID
Xét ΔBDC có
M,E lần lượt là trung điểm của CB,CD
=>ME là đường trung bình của ΔBDC
=>\(BD=2\cdot ME=2\cdot2\cdot ID=4ID\)
=>\(ID=\dfrac{1}{4}BD\)