Cho đường thẳng d và d' song song với nhau. Các điểm M, N thuộc d và P, Q thuộc d' sao cho MP vuông góc NQ. Chứng minh: 1/MP^2 + 1/NQ^2 không đổi khi M, N, P, Q thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ OH ⊥⊥ d
=> OH là khoảng cách từ d tới tâm đường tròn (O)
mà OH < R (3 < 5)
=> Đường thẳng d cắt đường tròn (O)
b) Xét ΔΔOAH vuông tại H có:
OH2+AH2=OA2OH2+AH2=OA2 (ĐL Pi-ta-go)
=> AH=OA2−OH2−−−−−−−−−−√=52−32−−−−−−√=4(cm)AH=OA2−OH2=52−32=4(cm)
Xét (O): AB là dây, OH ⊥⊥ AB
=> H trung điểm AB (quan hệ ⊥⊥ giữa đường kính và dây cung)
=> AB = 2AH = 8(cm)
c) Xét ΔΔABC có: O, H trung điểm AC, AB
=> OH là đường trung bình ΔΔABC
=> OH // BC mà OH ⊥⊥ AH
=> BC ⊥⊥ AH => ΔΔABC vuông tại B
=> AB2 + BC2 = AC2
=> BC=102−82−−−−−−−√=6(cm)BC=102−82=6(cm)
Xét ΔΔABC vuông tại B
có: sinC=ABAC=810=45⇒Cˆ=53o7′sinC=ABAC=810=45⇒C^=53o7′
=> Aˆ=36o52′A^=36o52′
d) Xét ΔΔACM vuông tại C: CB ⊥⊥ AM
có: AC2=AB⋅AMAC2=AB⋅AM (HTL tam giác vuông)
=> AM=AC2AB=1028=12,5(cm)AM=AC2AB=1028=12,5(cm)
lại có: AB + BM = AM ; AB = 8(cm)
=> BM = 4,5(cm)
a: Vì (d)//y=2x+3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=-1 vào (d), ta được:
b+2=-1
hay b=-3
c. Gọi: \(\left[{}\begin{matrix}y=x+1\left(d'\right)\\y=\left(m-1\right)x+5\left(d''\right)\end{matrix}\right.\)
Ta có: \(PTHDGD:\left(d\right)-\left(d'\right)\)
\(2x+3=x+1\)
\(\Rightarrow x=-2\left(1\right)\)
\(Thay\left(1\right)in\left(d'\right):y=-2+1=-1\)
\(\Rightarrow A\left(-2;-1\right)\)
Để 3 đt này đồng quy, thì \(A\left(-2;-1\right)\in\left(d''\right)\Leftrightarrow-1=-2m+2+5\)
\(\Rightarrow m=4\)
a: Vì (d)//y=2x+3 nên a=2
Thay x=1 và y=-1 vào y=2x+b, ta được:
b+2=-1
hay b=-3
\(a,\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\\ c,\text{PT hoành độ giao điểm }\left(d\right)\text{ và }y=x+1\\ x+1=2x-3\Leftrightarrow x=4\Leftrightarrow y=5\Leftrightarrow A\left(4;5\right)\\ \text{Để 3 đt đồng quy thì }A\left(4;5\right)\in y=\left(m-1\right)x+5\\ \Leftrightarrow4m-4+5=5\Leftrightarrow m=1\)
Qua P kẻ đường thẳng song song với NQ cắt d tại R. Kẻ \(PH\perp d\) tại H. Khi đó độ dài PH không đổi.
Khi đó vì \(NP\perp MQ\) nên tam giác MPR vuông tại P.
Tam giác MPR vuông tại P có đường cao PH nên \(\dfrac{1}{MP^2}+\dfrac{1}{PR^2}=\dfrac{1}{PH^2}\) (*) không đổi.
Lại có tứ giác NQPR là hình bình hành (các cặp cạnh đối song song) \(\Rightarrow RP=NQ\)
Thế vào (*), ta có: \(\dfrac{1}{MP^2}+\dfrac{1}{NQ^2}=\dfrac{1}{PH^2}\) không đổi, ta có đpcm.