Tính giá trị nhỏ nhất của biểu thức
x2+7x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=4m^2+69\ge0\Leftrightarrow\begin{matrix}m\ge\dfrac{\sqrt{69}}{2}\\m\le-\dfrac{\sqrt{69}}{2}\end{matrix}\)
viet : \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-\left(m^2+5\right)\end{matrix}\right.\)
ta có : \(A=\left(x_1+x_2\right)^2-x_1x_2+2m=49+m^2+5+2m=m^2+2m+54\)
vì \(m\ge\dfrac{\sqrt{69}}{2}\Rightarrow m^2+2m+54\ge\dfrac{69+2\sqrt{69}+216}{4}\) hay \(A\ge\dfrac{69+2\sqrt{69}+216}{4}\)
1: Ta có: \(x^2-2x-5\)
\(=x^2-2x+1-6\)
\(=\left(x-1\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi x=1
2: ta có: \(3x^2+5x-2\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{6}\)
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
Bài 1:
Ta có: \(6.|3x-12|\ge0\forall x\)
\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)
Hay \(A\ge23\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow x=4\)
Vậy Min A=23 \(\Leftrightarrow x=4\)
Bài 2:
Ta có: \(5.|14-7x|\ge0\forall x\)
\(\Rightarrow-5.|14-7x|\le0\forall x\)
\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)
Hay \(B\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow x=2\)
Vậy Max B=2019 \(\Leftrightarrow x=2\)
Ta có
I = ( x 2 + 4 x + 5 ) ( x 2 + 4 x + 6 ) + 3 = ( x 2 + 4 x + 5 ) ( x 2 + 4 x + 5 + 1 ) + 3 = x 2 + 4 x + 5 2 + x 2 + 4 x + 5 + 3 = x 2 + 4 x + 5 2 + x 2 + 4 x + 4 + 1 + 3 = x 2 + 4 x + 5 2 + x + 2 2 + 4
Ta có x 2 + 4 x + 5 = x 2 + 4 x + 4 + 1
= x + 2 2 + 1 ≥ 1; Ɐx nên x 2 + 4 x + 5 2 ≥ 1; Ɐx
Và x + 2 2 ≥ 0; Ɐx x 2 + 4 x + 5 2 + x + 2 2 + 4 ≥ 1 + 4
ó x 2 + 4 x + 5 2 + x + 2 2 + 4 ≥ 5
Dấu “=” xảy ra khi => x = -2
Vậy giá trị nhỏ nhất của I là 5 khi x = -2
Đáp án cần chọn là: B
Dễ mà
\(x^2+7x+5\)
\(x^2+2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+7\)
\(\left(x+\frac{5}{2}\right)^2-\frac{25}{4}+7\)
\(\left(x+\frac{5}{2}\right)^2-\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra khi và chỉ khi (x+5/2)^2=0
<=>x+5/2=0=>x=-5/2
vậy đê Bt đạt GTNN là 3/4 khi nà chi khỉ x=-5/2