Cho tam giác abc cân tại a, ah là đường cao trên đoạn ah lấy l , bl cắt ac tại e cl cắt ab tại f
a, CM tam giác lbc cân
b, góc AIB = AIC
c, CM lE = lF
d, CM EF // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G
=> G là trong tâm của tam giác
-> GB=BM ; GC = CN
mà BM=CN (gt) nên GB = GC
=> tam giác GBC cân tại G
Do đó tam giác BCN=tam giác CBM vì:
BC là cạnh chung
CN = BM (gt)
=> tam giác ABC cân tại A
xét tam giác ABD và ACE :
E=D (=90o)
CE=BD (gt)
A:chung
suy ra tam giác ABD =ACE(ch_gn)
suy ra góc B=C(t/ư)
xét tam giác EIB&DIC:
E=D(=90o)
IE=ID
B=C
suy ra tam giácEIB=DIC
suy ra IB=IC
suy ra tam giác BIC cân tại I, suy ra B=C
suy ra:đpcm
a) Đường cao BH = CK = a
BC = a/sinα
Kẻ đg cao AD ⇒ BD = DC = a/2sinα
⇒ AD = BD.tanα = sinα/cosα . a/2sinα = a/2cosα
AB = AC = AD/sinα = a/2sinαcosα = a/sin2α
b) Dễ dàng có đc S = pr
⇒ r = S/p = AD.BC/2AB+BC = a/2+2cosα
S = AB.BC.CA/4R
⇒ R = AB.BC.CA/4S = a/2sin22α.cosα
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)
Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)
H là chân đường cao kẻ từ B
\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)
\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)
\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)
Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)
\(\Rightarrow\) Phương trình đường cao kẻ từ C:
\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)
Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N
Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao
\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N
\(\Rightarrow\) Phương trình AN
Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt
\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)
\(\Rightarrow\) Tọa độ A là giao điểm AB và AN
Thử coi, chả biết đúng không. Không đúng cho t xin lỗi nha
A B C M
Giả dụ đề: Cho tam giác ABC có AM vừa là trung tuyến vừa là đường trung trực
Chứng minh: tam giác ABM = tam giác ACM
Xét tam giác ABM và tam giác ACM có:
\(\hept{\begin{cases}BM=CM\left(gt\right)\\AM:chung\\\widehat{AMB}=\widehat{AMC}=90^0\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
\(\Rightarrow AB=AC\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
hay:
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(hai góc tương ứng)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
Xét tam giác ABC với AH là đường trung tuyến đồng thời là đường trung trực nên AH \(\perp\)BC và HB = HC
Xét 2 tam giác vuông HAB và HAC ta có
HB = HC
\(\widehat{H_1}\)= \(\widehat{H_2}\)= 900
AH : cạnh chung
Nên \(\Delta HAB\)=\(\Delta HAC\)=> AB = AC
Nên \(\Delta ABC\) cân tại A
A B C H I E F
a/
Xét tg ABI và tg ACI có
AB=AC (cạnh bên tg cân)
\(\widehat{BAH}=\widehat{CAH}\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh)
AI chung
=> tg ABI = tg ACI (c.g.c) => IB=IC => tg IBC cân
b/
tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{AIB}=\widehat{AIC}\)
c/ Xét tg IBF và tg ICE có
\(\widehat{BIF}=\widehat{CIE}\) (góc đối đỉnh)
IB=IC (cmt)
tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{ABI}=\widehat{ACI}\)
=> tg IBF = tg ICE => IE=IF
d/
Ta có
IE=IF (cmt) => tg IEF cân tại I
\(\Rightarrow\widehat{IEF}=\widehat{IFE}=\dfrac{180^o-\widehat{FIE}}{2}\) (1)
Xét tg cân IBC có
\(\widehat{IBC}=\widehat{ICB}=\dfrac{180^o-\widehat{BIC}}{2}\) (2)
Mà \(\widehat{FIE}=\widehat{BIC}\) (góc đối đỉnh) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{IFE}=\widehat{ICB}\) Hai góc này nằm ở vị trí so le trong
=> EF//BC
a) ∆ABC cân tại A (gt)
AH là đường cao (gt)
⇒ AH cũng là đường trung trực của ∆ABC
⇒ AH là đường trung trực của BC
I ∈ AH (gt)
⇒ IB = IC
⇒ ∆IBC cân tại I
b) Xét ∆AIB và ∆AIC có:
AI là cạnh chung
AB = AC (do ∆ABC cân tại A)
IB = IC (cmt)
⇒ ∆AIB = ∆AIC (c-c-c)
⇒ ∠AIB = ∠AIC (hai góc tương ứng)
c) Do ∆AIB = ∆AIC (cmt)
⇒ ∠ABI = ∠ACI (hai góc tương ứng)
⇒ ∠FBI = ∠ECI
Xét ∆BIF và ∆CIE có:
∠FBI = ∠ECI (cmt)
IB = IC (cmt)
∠FIB = ∠EIC (đối đỉnh)
⇒ ∆BIF = ∆CIE (g-c-g)
⇒ IF = IE (hai cạnh tương ứng)
Hay IE = IF
d) ∆IBC cân tại I (cmt)
IH là đường trung trực của BC (cmt)
⇒ IH cũng là đường phân giác của ∆IBC
⇒ ∠BIH = ∠CIH
Ta có:
∠AIE = ∠BIH (đối đỉnh)
∠AIF = ∠CIH (đối đỉnh)
Mà ∠BIH = ∠CIH (cmt)
⇒ ∠AIE = ∠AIF
Xét ∆AIE và ∆AIF có:
IE = IF (cmt)
∠AIE = ∠AIF (cmt)
AI là cạnh chung
⇒ ∆AIE = ∆AIF (c-g-c)
⇒ AE = AF (hai cạnh tương ứng)
⇒ A nằm trên đường trung trực của EF (1)
Do IE = IF (cmt)
⇒ I nằm trên đường trung trực của EF (2)
Từ (1) và (2) ⇒ AI là đường trung trực của EF
⇒ AI ⊥ EF
⇒ AH ⊥ EF
Mà AH ⊥ BC (gt)
⇒ EF // BC