K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

\(25-3\sqrt{x}=6\sqrt{x}+7\left(ĐK:x\ge0\right)\).

\(\Leftrightarrow-3\sqrt{x}-6\sqrt{x}=7-25\).

\(\Leftrightarrow-9\sqrt{x}=-18\).

\(\Leftrightarrow\sqrt{x}=2\).

\(\Leftrightarrow x=2^2=4\)(thỏa mãn điều kiện).

Vậy phương trình có tập nghiệm: \(S=\left\{4\right\}\).

19 tháng 5 2021

\(25-3\sqrt{x}=6\sqrt{x}+7\)(\(x\ge0\))

<=>\(-3\sqrt{x}-6\sqrt{x}=-18\)

<=>\(-9\sqrt{x}=-18\)

<=>\(\sqrt{x}=2\)

<=> \(x=\pm4\)

30 tháng 7 2016

1.

đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)

có \(a^2+b^2=4\)

pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)

\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)

\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)

vì a,b>o nên \(a-b=\sqrt{2}\)

\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)

Bình phương 2 vế:

\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)

\(\Leftrightarrow\sqrt{4-x}=1\)

\(\Rightarrow x=3\)

30 tháng 7 2016

Nếu đúng thì tích giùm mình cái nha!!!!!!!!!!!

28 tháng 8 2021

\(1,ĐKx\ge5\)

\(\sqrt{\left(x-5\right)\left(x+5\right)}+2\sqrt{x-5}=3\sqrt{x+5}+6\)

\(\Rightarrow\sqrt{x-5}\left(\sqrt{x+5}+2\right)-3\left(\sqrt{x+5}+2\right)=0\)

\(\Rightarrow\left(\sqrt{x+5}+2\right)\left(\sqrt{x-5}-3\right)=0\)

\(\left[{}\begin{matrix}\sqrt{x+5}=-2loại\\\sqrt{x-5}=3\end{matrix}\right.\)\(\Rightarrow x-5=9\Rightarrow x=14\)(TMĐK)

2a,ĐK \(x\ge0;x\ne9\)

,\(B=\dfrac{7\left(3-\sqrt{x}\right)-12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\)

\(M=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(M=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

 

 

 

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

a) ĐKXĐ: \(x\geq -3\)

Ta có: \(\sqrt{x+3}=1+\sqrt{2}\)

\(\Rightarrow x+3=(1+\sqrt{2})^2\)

\(\Leftrightarrow x+3=1+2+2\sqrt{2}=3+2\sqrt{2}\)

\(\Leftrightarrow x=2\sqrt{2}\) (thỏa mãn)

Vậy \(x=2\sqrt{2}\)

b) ĐK: \(x\geq 0\)

Có: \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)

\(\Rightarrow 10+\sqrt{5x}=(\sqrt{6}+2)^2=6+4+4\sqrt{6}\)

\(\Leftrightarrow \sqrt{5x}=4\sqrt{6}=\sqrt{96}\)

\(\Leftrightarrow x=\frac{96}{5}\) (thỏa mãn)

Vậy.....

c) ĐK: \(x\geq 4\)

Ta có: \(\sqrt{x^2-16}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{(x-4)(x+4)}-\sqrt{x-4}=0\)

\(\Leftrightarrow \sqrt{x-4}(\sqrt{x+4}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-4}=0\\ \sqrt{x+4}=1\end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x=4\\ x=-3\end{matrix}\right.\) (loại $x=-3$ vì $x\geq 4$)

Vậy \(x=4\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

d) ĐK: \(x\ge 0\)

Ta có: \(x-6\sqrt{x}+5=0\)

\(\Leftrightarrow (x-\sqrt{x})-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow \sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0\)

\(\Leftrightarrow (\sqrt{x}-5)(\sqrt{x}-1)=0\)

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x}-5=0\\ \sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=25\\ x=1\end{matrix}\right.\) (đều t/m)

e) ĐK: \(x\geq 3\)

\(\sqrt{x-3}\geq 7\)

\(\Leftrightarrow x-3\geq 49\)

\(\Leftrightarrow x\geq 52\). Kết hợp với ĐK suy ra \(x\geq 52\)

f) ĐK: \(x\geq -1\)

Ta có: \(\sqrt{x+1}\leq 3\)

\(\Leftrightarrow x+1\leq 9\)

\(\Leftrightarrow x\leq 8\)

Kết hợp với ĐK suy ra \(-1\leq x\leq 8\)

1 tháng 8 2018

DỂ QUÁ!!!!!!!!!!!!!!!!!!!!!!!!

tui hk biết làm

11 tháng 8 2018

em mới lớp 8 chuy ơi

28 tháng 9 2019

\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)

\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)

\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{x-5}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)

Dễ thấy : \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)

\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

Chúc bạn học tốt !!!

3 tháng 8 2023

2

\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)

b

\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)

Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:

\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)

1:

a: =>2x-2căn x+3căn x-3-5=2x-4

=>căn x-8=-4

=>căn x=4

=>x=16

b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)

=>(căn x-2)(x-căn x+4)=0

=>căn x-2=0

=>x=4

26: \(x^2-\sqrt{x}+x-1\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x+\sqrt{x}+\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x+2\sqrt{x}+1\right)\)

25: Ta có: \(-6x+7\sqrt{x}-2\)

\(=-6x+3\sqrt{x}+4\sqrt{x}-2\)

\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)\)

\(=\left(2\sqrt{x}-1\right)\left(2-3\sqrt{x}\right)\)

27: Ta có: \(2a-5\sqrt{ab}+3b\)

\(=2a-2\sqrt{ab}-3\sqrt{ab}+3b\)

\(=2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-3\sqrt{b}\right)\)

28: Ta có: \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)

\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)

\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

1. ĐKXĐ: $x\geq \frac{-3}{5}$

PT $\Leftrightarrow 5x+3=3-\sqrt{2}$

$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

2. ĐKXĐ: $x\geq \sqrt{7}$ 

PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$

$\Leftrightarrow x-49=4$

$\Leftrightarrow x=53$ (thỏa mãn)

 

a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)

=>\(10\cdot\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7

b: =>|x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5 hoặcx=1