K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2024

\(a.\left(\dfrac{2}{33}\right)^n\cdot11^n=\dfrac{4}{9}\\ \left(\dfrac{2}{33}\cdot11\right)^n=\left(\dfrac{2}{3}\right)^2\\ \left(\dfrac{2}{3}\right)^n=\left(\dfrac{2}{3}\right)^2\\ n=2\\ b.\dfrac{125}{5^n}=5\\\dfrac{ 5^3}{5^n}=5\\ 5^{3-n}=5^1\\ 3-n=1\\ n=3-1\\ n=2\\ c.\dfrac{\left(-6\right)^n}{36}=-216\\ \dfrac{\left(-6\right)^n}{\left(-6\right)^2}=\left(-6\right)^3\\ =\left(-6\right)^{n-2}=\left(-6\right)^3\\ n-2=3\\ n=2+3\\ n=5\\ d.20^n:14^n=\dfrac{10}{7}\\ \left(\dfrac{20}{14}\right)^n=\dfrac{10}{7}\\ \left(\dfrac{10}{7}\right)^n=\left(\dfrac{10}{7}\right)^1\\ n=1\)

14 tháng 6 2015

Xét 1 và 2

Nếu N tận cùng là 7 =>N+45 có tận cùng là 2 mà số chính phương không có số nào có tận cùng là 2 nên 1 và 2 có 1 cái sai

Xét 2 và 3 

N có chữ số tận cùng là 7 =>N-44 có tận cùng là 3 mà số chính phương không có số nào có tận cùng là 3 nên 2 và 3 có 1 cái sai

=>1 và 3 đúng 2 sai

19 tháng 7 2023

n la gi v a

19 tháng 7 2023

N là số tự nhiên 

Viết chương trình Python có sử dụng chương trình con giải các bài toán sauCâu 1 (4 đ). Tìm số tự nhiên n lớn nhất thỏa mãn điều kiện sau: 3n^5 – 317n<a Với a là một số thực bất kì nhập tử bản phim.                                                                Câu 2 (4 đ). Số đẹp. Một số nguyên dương được gọi là đẹp nếu tổng binh phương các chữ số của nó (trong dạng...
Đọc tiếp


Viết chương trình Python có sử dụng chương trình con giải các bài toán sau

Câu 1 (4 đ). Tìm số tự nhiên n lớn nhất thỏa mãn điều kiện sau: 3n^5 – 317n<a Với a là một số thực bất kì nhập tử bản phim.                                                                Câu 2 (4 đ). Số đẹp. Một số nguyên dương được gọi là đẹp nếu tổng binh phương các chữ số của nó (trong dạng biểu diễn thập phân) là một số nguyên tố, Ví dụ: 12 là một số đẹp vì l^2+ 2^2 = 5 là số nguyên tố.
Yêu cầu: cho số nguyên N (I<=N<=10^6). Hãy cho biết số N có phải là số đẹp không                                                                                                                        Câu 3 (2 d). Nhập vào 1 dãy N số nguyên a1, a2, ..., an. Tìm số lớn thứ nhì trong dãy đã cho.

0
18 tháng 7 2023

THAM KHẢO!

def is_prime(n):

 if n <= 1:

  return "KHÔNG"# Trường hợp n <= 1 không phải số nguyên tố

 elif n <= 3:

  return "CÓ"# Trường hợp n = 2 hoặc n = 3 là số nguyên tố

 elif n % 2 == 0:

  return "KHÔNG"# Trường hợp n chẵn lớn hơn

 
10 tháng 6 2021

để \(\left|8-x\right|=8-x< =>8-x\ge0< =>x\le8\)

\(=>8-x=x^2+x< =>x^2+2x-8=0\)

\(< =>\left(x+1\right)^2-3^2=0< =>\left(x-2\right)\left(x+4\right)=0\)

\(=>\left[{}\begin{matrix}x=2\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\)

*để\(\left|8-x\right|=x-8< =>8-x< 0< =>x>8\)

\(=>x-8=x^2+x< =>x^2=-8\)(vô lí)

vậy x=2 hoặc x=-4

7 tháng 1 2019

Bài 2: Ôn tập các số đến 100 (tiếp theo) | Vở bài tập Toán lớp 2

Bài 2: Ôn tập các số đến 100 (tiếp theo) | Vở bài tập Toán lớp 2

3 tháng 11 2021

ô đầu tiên nối với 10 ,ô thứ hai nối với 80,90

Thủ Lĩnh Thẻ Bài SAKURA

Gọi số cần tìm là abc ; abc viết theo thứ tự ngược lại có dạng là cba
Theo đề bài, ta có : cba - abc = 792
c x 100+b x10+ a - a x100 + b x10 +c= 792
c x100 - c +b x10 - b x 10 + a - a x100 = 792
c x 99 + a - a x 100 = 792
c x 99 + a = 792 + a x 100
c x 99 = 792 + a x100 - a
c x 99 = 792 + a x 99
c x 99 - a x99 = 792
(c - a) x 99 = 792

c - a = 792 : 99 = 8
Ta có : c b a
- a b c
7 9 2
Xét a và c : c - a = 8 nhưng trong phép tính c - a = 7 suy ra đây là phép trừ có nhớ và a < c nên phải lấy 1a - c = 2 ; nhớ 1 sang b ở số trừ. Nếu c lớn nhất = 9 thì a = 1 ta có : 11 - 9 = 2 ( đúng )
suy ra c =9; a = 1. Ta có :
9 b 1
- 1 b 9
7 9 2
suy ra b = 0 để b - ( b+ 1) có nhớ. Ta có :
901 - 109 = 792 Đ
Vậy số cần tìm là 109

Mệnh đề này đúng là bởi vì 12 là bội chung của cả 2 và 3

cho nên khi n chia hết cho 12 thì chắc chắn n sẽ chia hết cho 2 và 3

 

25 tháng 3 2017

thêm 0 vào dãy trên

nhận xét

tổng chữ số của 0 và 1999 là

1+9+9+9=28

tổng các chữ số của 1 và 1998 là

1+9+9+8+1=28 

tổng các chữ số của 2 và 1997 là

1+9+9+7+2=28

ta thấy cứ 2 số hạng đầu và cuối đều  có tổng=28 như vậy có 1000 nhóm  do đó tổng các chữ số là

28x1000=28000

25 tháng 3 2017

từ 1 đến 1999 có 1999 số

tổng tất cả các số của dãy đó là:

(1+1999)x1999:2=1999000

14 tháng 1 2019

- Điều kiện: x ≠ ±3

- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.

- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3

x1 có thỏa mãn điều kiện nói trên

x2 không thỏa mãn điều kiện nói trên

Vậy nghiệm của phương trình đã cho là: x = 1