K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

a)A= 2+22+23+.....+22017

A*2=22+23+24+......+22017+22018

a*2-a=(22+23+24+......+22017+22018)-(2+22+23+......+22017)

a*1=22018-2

b)A+2=2X

22018-2+2=2X

=>2X=22018

X=2018

28 tháng 10 2017

chọn câu trả lời mình đi

16 tháng 8 2023

a) Ta có A = 21 + 2+ 23 + ... + 22022

2A = 2+ 23 + 24 + ... + 22023

2A - A = ( 2+ 23 + 24 + ... + 22023 ) - ( 21 + 2+ 23 + ... + 22022 )

A = 22023 - 2

Lại có B = 5 + 5+ 5+ ... + 52022

5B = 5+ 5+ 54 + ... + 52023

5B - B = ( 5+ 5+ 54 + ... + 52023 ) - ( 5 + 5+ 5+ ... + 52022 )

4B = 52023 - 5

B = \(\dfrac{5^{2023}-5}{4}\)

b) Ta có : A + 2 = 2x

⇒ 22023 - 2 + 2 = 2x

⇒ 22023 = 2x

Vậy x = 2023

Lại có : 4B + 5 = 5x

⇒ 4 . \(\dfrac{5^{2023}-5}{4}\) + 5 = 5x

⇒ 52023 - 5 + 5 = 5x

⇒ 52023 = 5x

Vậy x = 2023

 

25 tháng 8 2024

Bây giờ cậu cần không thế;D

 

S
13 tháng 11 2024

h mik ko gấp nữa, nhưng nếu cậu biết cách giải thì chỉ mik nha ạ, làm tư liệu sau này mik học ý ạ :>

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

16 tháng 8 2023

a) \(A=2+2^2+2^3+...+2^{2022}\)

\(2A=2.\left(2+2^2+2^3+...+2^{2022}\right)\)

\(2.A=2^2+2^3+2^4+...+2^{2023}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2023}\right)-\left(2+2^2+2^3+...+2^{2022}\right)\)

\(A=2^{2023}-2\)

b) A + 2 = 2x

Hay \(\left(2^{2023}-2\right)+2=2^x\)

\(2^{2023}-2+2=2^x\)

\(2^{2023}=2^x\)

\(\Rightarrow x=2023\)

 

 

16 tháng 8 2023

   a, A = 21 + 22 + 23 + ...+ 22022

     2A =         22 + 23 +...+ 22022 + 22023

2A - A = 22023 - 21 

       A = 22023 - 2 

b,   A + 2  = 2\(^x\)  ⇒ 22023 - 2  + 2 = 2\(x\) 

                            22023               = 2\(^x\)

                           2023                 = \(x\) 

 

2 tháng 5 2019

a, 2.(x – 5)+7 = 77

<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40

b,  x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14

<=> x - 1 3 - 3 + 2 4 = 14

<=>  x - 1 3 = 14 + 3 - 16 = 1

<=> x – 1 = 1 <=> x = 2

c,  1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1

Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A =  2 + 2 2 + 2 3 + . . . + 2 2017

=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )

=> A =  2 2017 - 1

Ta có:  1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 =>  2 2017 - 1 =  2 x - 1 - 1 => x = 2018

d,  5 2 x - 3 - 2 . 5 2 = 5 2 . 3

<=>  5 2 x - 3 = 5 2 . 3 + 5 2 . 2

<=>  5 2 x - 3 = 5 2 . ( 3 + 2 )

<=>  5 2 x - 3 = 5 3

<=> 2x – 3 = 3 => x = 3

17 tháng 5 2017

a) 22 + (2x -13) = 83 => 2x -13 = 61 => x = 37.

b) 51 - (-12 + 3x) = 27 => 63 - 3x = 27 => x = 12.

c) - (2x + 2) + 21 = - 23 => 2x + 2 = 44 => x = 21.

d) 25 - (25 - x) = 0 => 25 - 25 + x = 0 => x = 0.

17 tháng 3 2017

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

13 tháng 3 2022

Bài 2 : 

a, \(x=\dfrac{3}{5}-\dfrac{7}{8}=\dfrac{24-30}{40}=-\dfrac{6}{40}=-\dfrac{3}{20}\)

b, \(2x-1=-2\Leftrightarrow x=-\dfrac{1}{2}\)