cho hai đường thẳng có pt d:mx-(n+1)y-1=0 và d':nx+2my+2=0. tìm ma và n sao cho d cắt d' tại điểm P(-1;3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay \(x=1;y=-1\) vào phương trình đường thẳng \(\left(d\right)\) , ta có:
\(a\cdot1+-1\left(2a-1\right)+3=0\)
\(\Leftrightarrow a-2a+1+3=0\)
\(\Leftrightarrow a-2a+4=0\)
\(\Leftrightarrow\left(a-1\right)^2+2=0\) (vô lí do \(\left(a-1\right)^2+2\ge2>0\forall a\)
Do đó phương trình ban đầu vô nghiệm
Vậy đường thẳng \(\left(d\right)\) không đi qua điểm M
![](https://rs.olm.vn/images/avt/0.png?1311)
PTHĐGĐ là:
\(-x^2=-mx+m-1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:,
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=17\)
\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: (d)//y=x+1
Để (d) song song với đường thẳng y=x+1 thì \(\left\{{}\begin{matrix}a=1\\b\ne1\end{matrix}\right.\)
hay (d): y=x+b
Vì (d) đi qua M(1;-2) nên Thay x=1 và y=-2 vào hàm số y=x+b, ta được:
\(b+1=-2\)
hay b=-3
Vậy: a=1 và b=-3
Do P(-1;3) thuộc d;d'
=> \(\left\{{}\begin{matrix}-m-3\left(n+1\right)-1=0\\-n+6m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m-3n=4\\6m-n=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{10}{19}\\n=-\dfrac{22}{19}\end{matrix}\right.\)