Bài 5: Tìm x
a) \(\dfrac{1}{20}\) - \(\left(x-\dfrac{8}{5}\right)\)= \(\dfrac{1}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1/20 - (x - 8/5) = 1/10
x - 8/5 = 1/20 - 1/10
x - 8/5 = -1/20
x = -1/20 + 8/5
x = 31/20
b) 7/4 - (x + 5/3) = -12/5
x + 5/3 = 7/4 + 12/5
x + 5/3 = 83/20
x = 83/20 - 5/3
x = 149/60
c) x - [17/2 - (-3/7 + 5/3)] = -1/3
x - (17/2 - 26/21) = -1/3
x - 305/42 = -1/3
x = -1/3 + 305/42
x = 97/14
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
\(a,\left(x-\dfrac{5}{8}\right).\dfrac{5}{8}=-\dfrac{15}{36}\)
\(\left(x-\dfrac{5}{8}\right)=-\dfrac{15}{36}\div\dfrac{5}{8}\)
\(x-\dfrac{5}{8}=-\dfrac{2}{3}\)
\(x=-\dfrac{2}{3}+\dfrac{5}{8}\)
\(x=-\dfrac{1}{24}\)
\(b,\left(x-\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(\Rightarrow x-\dfrac{1}{3}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}+\dfrac{1}{3}\)
\(x=\dfrac{7}{6}\)
\(a,\left(x-\dfrac{5}{8}\right)\cdot\dfrac{8}{18}=-\dfrac{15}{16}\\ x-\dfrac{5}{8}=-\dfrac{15}{36}:\dfrac{8}{18}\\ x-\dfrac{5}{8}=-\dfrac{15}{16}\\ x=-\dfrac{15}{16}+\dfrac{5}{8}\\ x=-\dfrac{15}{16}+\dfrac{10}{16}\\ x=-\dfrac{5}{16}\\ b,x-\dfrac{1}{3}=\dfrac{5}{6}\\ x=\dfrac{5}{6}+\dfrac{1}{3}\\ x=\dfrac{5}{6}+\dfrac{2}{6}\\ x=\dfrac{7}{6}\)
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
a: Ta có: \(\dfrac{1}{4}:x=3\dfrac{4}{5}:40\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{1}{4}\cdot\dfrac{\dfrac{608}{15}}{3+\dfrac{4}{5}}\)
\(\Leftrightarrow x=\dfrac{152}{15}:\dfrac{19}{5}=\dfrac{8}{3}\)
b: Ta có: \(\left(x+1\right):\dfrac{5}{6}=\dfrac{20}{3}\)
\(\Leftrightarrow x+1=\dfrac{50}{9}\)
hay \(x=\dfrac{41}{9}\)
c: Ta có: \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
hay \(x\in\left\{8;-8\right\}\)
c. \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x-1\right).\left(x+1\right)\)
\(63=x^2-1\)
\(x^2=63+1\)
\(x^2=64\)
\(x^2=8^2\)
\(x=8\)
a) (-5/9)^10 : x = (-5/9)^8
=> x = (-5/9)^10 : (-5/9)^8
=> x = (-5/9)^10-8 = (-5/9)^2
=> x = 25/81
b ) x : (-5/9)^8 = (-9/5)^8
=> x = (-9/5)^8 . (-5/9)^8
=> x = ( (-9)^8.(-5)^8 )/(5^8 . 9^8 )
=> x = 1
C) x^3 = -8 =(-2)^3
=> x = -2
a) (-5/9)¹⁰ : x = (-5/9)⁸
x = (-5/9)¹⁰ : (-5/9)⁸
x = (-5/9)²
x = 25/81
b) x : (-5/9)⁸ = (-9/5)⁸
x = (-9/5)⁸ . (-5/9)⁸
x = [-9/5 . (-5/9)]⁸
x = 1⁸
x = 1
c) x³ = -8
x³ = (-2)³
x = -2
\(\Leftrightarrow x-\dfrac{8}{5}=\dfrac{1}{20}-\dfrac{1}{10}=-\dfrac{1}{20}\\ \Leftrightarrow x=-\dfrac{1}{20}+\dfrac{8}{5}=\dfrac{31}{20}\)