viết kết quả dưới dạng bình phương của 1 số:
\(A=2^2\cdot5^2+4\cdot3^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
a: \(2^5\cdot5^2-8^2-7=27^2\)
b: \(2^3+3^2\cdot3^2-40=7^2\)
\(B=5.3^2+4.3^2=3^2\left(5+4\right)=9.9=9^2\)
\(C=5^3+6^3+59=125+216+59=400=20^2\)
\(D=5.4^3+2^4.5+41=320+80+41=441=21^2\)
b: \(5\cdot3^2+4\cdot3^2=3^2\cdot9=3^4\)
c: \(5^3+6^3+59=20^2\)
\(5\cdot4^3+2^4\cdot5+41=21^2\)
\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}\)
\(=\frac{1}{4}\)
\(A=2^5.5^2-8^2-7=800-64-7=729=27^2\)
\(B=2^3.4^2+3^2.3^2-40=128+81-40=169=13^2\)
\(C=11.2^4+6^2.19+40=176+684+40=900=30^2\)
\(D=4^3+6^3+7^3+2=64+216+343+2=625=25^2\)
A = 2⁵.(-5)² - 8² - 7
= 32.25 - 64 - 7
= 729
= 27²
B = 2³.(-4)² + (-3)².3² - 40
= 8.16 + 9.9 - 40
= 169
= 13²
C = (1/4 - 1/2 - 1)³ . (2 - 2/5)³
= (-5/4)³ . (8/5)³
= (-5/4 . 8/5)³
= (-2)³
D = (-1/4)² : (1/2 - 1/3)
= 1/16 : 1/6
= 3/8
E = 4 . (1/4)² + 25 . [(3/4)³ : (5/4)³] : (3/2)³
= 1/4 + 25 . (3/4 . 5/4)³ : (3/2)³
= 1/4 + 25 . (15/16)³ : 27/8
= 1/4 + 25 . 3375/4096 : 27/8
= 1/4 + 84375/4096 : 27/8
= 1/4 + 3125/512
= 3253/512
F = 2³ + 3.(1/2)⁰ - 1 + [(-2)² : 1/2] - 8
= 8 + 3.1 - 1 + (4 : 1/2) - 8
= 8 + 3 - 1 + 8 - 8
= 10
c: \(C=5\cdot4^3+2^4\cdot5+41\)
\(=5\cdot64+16\cdot5+41\)
\(=320+80+41\)
\(=441=21^2\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)
\(A=2^2\cdot5^2+4\cdot3^2\\ =\left(2\cdot5\right)^2+4\cdot9\\ =10^2+36\\ =100+36\\ =136\)
Đây không phải giá trị của một số bình phương
A = (2 .5)\(^2\) + (4.3)\(^2\)
A = 10\(^2\) + 12\(^2\)
A= 244