15 mũ 12 và 81 mũ 3 . 125 mũ 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
15^12=(3*5)^12=3^12*5^12
81^3*125^5=(3^4)^3*(5^3)^5=3^12*5^15
Vì 12<15 suy ra 5^12<5^15
Suy ra 3^12*5^12<3^12*5^15
\(a.81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}=3^{12}.5^{12}.5^3=\left(3.5\right)^{12}.5^3=15^{12}.5^3>15^{12}\)
\(b.4^{20}.81^{12}=\left(2^2\right)^{20}.\left(9^2\right)^{12}=2^{40}.9^{24}=2^{20}.2^{20}.9^{20}.9^4=\left(2.9\right)^{20}.2^{20}.9^4=18^{20}.2^{20}.9^4>18^{20}\)
\(c.73^{75}=\left(73^3\right)^{25}=389017^{25}\)
\(107^{50}=107^{2.50}=\left(107^2\right)^{25}=11449^{25}\)
Vì \(389017^{25}>11449^{25}\Rightarrow73^{75}>107^{50}\)
127 : 67 = ( 12:6)7 = 27
275 : 813 = ( 33)5 : ( 34)3 = 315 : 312 = 315-12 = 33
183 : 93 = ( 18:9)3= 23
1253: 254= ( 53)3: ( 52)4= 59 : 58 = 59-8 = 5
\(4^8.2^{20}=2^{16}.2^{20}=2^{36}\)
\(9^{12}.27^5.81^4=3^{24}.3^{15}.3^{16}=3^{55}\)
mk chỉnh đề
\(64^3.4^5.16^2=4^9.4^5.4^4=4^{18}\)
\(25^{20}.125^4=5^{40}.5^{12}=5^{52}\)
\(x^7.x^4.x^3=x^{14}\)
\(5^{12}.7-5^{11}.10\)
\(=5^{11}.\left(5.7-10\right)\)
\(=5^{11}.25\)
\(=5^{11}.5^2\)
\(=5^{13}\)
\(2^{20}.15+2^{20}.85\)
\(=2^{20}.5\left(3+17\right)\)
\(=2^{20}.100\)
\(=104857600\)
\(125^3:25^4\)
\(=\left(5^3\right)^3:\left(5^2\right)^4\)
\(=5^9:5^8\)
\(=5\)
\(24^4:3^4-32^{12}:16^{12}\)
\(=\left(24:3\right)^4-\left(32:16\right)^{12}\)
\(=8^4-2^{12}\)
\(=0\)
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).
a) \(12^7:6^7=\left(12:6\right)^7=2^7\)
b) \(27^5:81^3=\left(3^3\right)^5:\left(3^4\right)^3=3^{15}:3^{12}=3^3=27\)
c) \(18^3:9^3=\left(18:9\right)^3=2^3=8\)
d) \(125^3:25^4=\left(5^3\right)^3:\left(5^2\right)^4=5^9:5^8=5\)
a, 127 : 67 = (12 : 6)7 = 27 = 128.
b,275 : 813 = (33)5 : (34)3 = 315 : 312 = 315 - 12 = 33 = 27
c,183 : 93 = (18 : 9)3 = 23 = 8.
d, 1253 : 254 = (53)3 : (52)4 = 59 : 58 = 59 - 8 = 5.
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
a) \(81^{40}=\left(3^4\right)^{40}=3^{160}\)
\(27^{14}=\left(3^3\right)^{14}=3^{42}\)
Vì \(3^{160}>3^{42}\) => \(81^{40}>27^{14}\)
b) \(5^{64}=5^{4.16}=625^{16}\)
\(3^{96}=3^{6.16}=729^{16}\)
Vì \(625^{16}< 729^{16}\)=> \(5^{64}< 3^{96}\)
c) \(125^{12}=\left(5^3\right)^{12}=5^{36}\)
\(25^{10}=\left(5^2\right)^{10}=5^{20}\)
Vì \(5^{36}>5^{20}\)=> \(125^{12}>25^{10}\)
T_i_c_k nha,mơn bạn nhìu ^^
a) x=3
b) x=1
c) x=1 hoặc -5
d) x=2
e) x=2
g) x=2
h) x=1 hoặc x=0 hoặc x=-1
i) x=-1 hoặc x=0
\(a.4^x=64\)
\(4^x=4^3\)
\(\Rightarrow x=3\)
\(b,3^{x\times4}=81\)
\(3^{x\times4}=3^4\)
\(x\times4=4\)
\(\Rightarrow x=1\)
\(c,\left(2+x\right)^4=81\)
\(\left(2+x\right)^4=3^4\)
\(2+x=3\)
\(x=3-2\)
\(x=1\)
\(d,5^{x\times5}=125\)
\(5^{x\times5}=5^3\)
\(x\times5=3\)
\(x=3:5\)
\(x=\frac{3}{5}\)
Ta có :
\(15^{12}=\left(3.5\right)^{12}=3^{12}.5^{12}\)
\(81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}\)
Mà \(3^{12}.5^{15}>3^{12}.5^{12}\)
\(\Rightarrow15^{12}< 81^3.125^5\)
ban viết rõ ra dược ko