Tìm x biết:
27/3^x (23 phần 3 mũ x) =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
\(a)x+\left(-5\right)=-14\)
\(\Leftrightarrow x=-14-\left(-5\right)\)
\(\Leftrightarrow x=-14+5\)
\(\Leftrightarrow x=-9\)
\(b)-x+7=-23\)
\(\Leftrightarrow-x=-23+ \left(-7\right)\)
\(\Leftrightarrow-x=-30\)
\(\Leftrightarrow x=30\)
\(c)112-x=\left(-3\right).\left(-15\right)\)
\(\Leftrightarrow112-x=45\)
\(\Leftrightarrow x=112-45\)
\(\Leftrightarrow x=67\)
\(d)\left(x-15\right)-27=5^5:5^3\)
\(\Leftrightarrow\left(x-15\right)-27=5^2\)
\(\Leftrightarrow\left(x-15\right)-27=25\)
\(\Leftrightarrow x-15=52\)
\(\Leftrightarrow x=67\)
\(e)\left(2x+1\right)^2=81\)
\(\Leftrightarrow\left(2x+1\right)^2=9^2\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
\(f)(x-5^3)=-27\)
\(f)(x-5^3)=-9^3\)
\(\Leftrightarrow x-5=-9\)
\(\Leftrightarrow x=-4\)
P/s: Bạn tự kết luận.
a) \(\left(x-3\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=3^2\\\left(x-3\right)^2=\left(-3\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
Vậy ........
b) \(3^{x-1}=27\)
\(3^{x-1}=3^7\)
\(\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=6\)
Vậy ...
a) \(\left(x-3\right)^2=9\Rightarrow\left(x-3\right)^2=3^2\Rightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3+3=6\\x=-3+3=0\end{cases}}\)
Vậy x = 6 hoặc 0
b) \(3^{x+1}=27\)
\(\Leftrightarrow3^{x+1}=3^3\Rightarrow x+1=3\Rightarrow x=2\)
Vậy x = 2
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
a, (-0,2)2 \(\times\) 5 - \(\dfrac{2^{13}\times27^3}{4^6\times9^5}\)
= 0,04 \(\times\) 5 - \(\dfrac{2^{13}\times3^9}{2^{12}\times3^{10}}\)
= 0,2 - \(\dfrac{2}{3}\)
= \(\dfrac{2}{10}\) - \(\dfrac{2}{3}\)
= - \(\dfrac{7}{15}\)
b, \(\dfrac{5^6+2^2.25^3+2^3.125^2}{26.5^6}\)
= \(\dfrac{5^6+4.5^6+8.5^6}{26.5^6}\)
= \(\dfrac{5^6.\left(1+4+8\right)}{26.5^6}\)
= \(\dfrac{1}{2}\)
a, (-0,2)2 ×× 5 - 213×27346×9546×95213×273
= 0,04 ×× 5 - 213×39212×310212×310213×39
= 0,2 - 2332
= 210102 - 2332
= - 715157
b, 56+22.253+23.125226.5626.5656+22.253+23.1252
= 56+4.56+8.5626.5626.5656+4.56+8.56
= 56.(1+4+8)26.5626.5656.(1+4+8)
= 1221
a.\(x^3-8=x^3-2^3=\left(x-2\right)\left(x^2+2x+4\right)\)
b.\(27x^3+125y^3=\left(3x\right)^3+\left(5y\right)^3=\left(3x+5y\right)\left(9x^2-15xy+25y^2\right)\)
c.\(\left(2x-1\right)^3+8=\left(2x-1\right)^3+2^3=\left(2x+1\right)\left[\left(2x-1\right)^2-2\left(2x-1\right)+4\right]\)
d.\(x^6+6^3=\left(x^2+6\right)\left(x^4-6x+36\right)\)
e.\(1-27x^3=1-\left(3x\right)^3=\left(1-3x\right)\left(1+3x+9x^2\right)\)
j.\(\left(x-3\right)^3-27=\left(x-3\right)^3-3^3=\left(x-6\right)\left[\left(x-3\right)^2+3\left(x-3\right)+9\right]\)
g.\(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
t.\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
u.\(x^3+\frac{1}{27}=x^3+\left(\frac{1}{3}\right)^3=\left(x+\frac{1}{3}\right)\left(x^2-\frac{x}{3}+\frac{1}{9}\right)\)