chứng minh 5^2017+2^405+213^16 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
76 + 75 - 74 = 73 x (73 + 72 - 7) = 74 x 385 = 74 x 35 x 11
Vậy 76 + 75 - 74 chia chết cho 35
b.
165 + 215 = (24)5 + 215 = 220 + 215 = 215 x (25 + 1) = 215 x 33
Vậy 165 + 215 chia hết cho 33
c.
817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405
Vậy 817 - 279 - 913 chia hết cho 405
Chúc bạn học tốt ^^
a, Ta có:
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=> \(7^6+7^5-7^4\) chia hết cho 55
b, Ta có:
\(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\)
=> \(16^5+2^{15}\) chia hết cho 33
c, Ta có:
\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{22}.3^4.5=3^{22}.405\)
=> \(81^7-27^9-9^{13}\) chia hết cho 405
Chúc bạn học tốt!!!
\(7^6+7^5-7^4=7^4.7^2+7^4.7-7^4.1=7^4\left(7^2+7-1\right)=7^4.55⋮55\rightarrowđpcm\)các câu sau tương tự z
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
B =405n+2405+m2�=405�+2405+�2
Có 405n=¯¯¯¯¯¯¯¯¯...5405�=...5¯
2405=(24)101.2=16101.2=¯¯¯¯¯¯¯¯¯...6.2=¯¯¯¯¯¯¯¯¯...22405=(24)101.2=16101.2=...6¯.2=...2¯
m2�2 là 1 số chính phương nên có tận cùng là 0;1;4;5;6;9
⇒⇒ B có tận cùng là 7;8;1;2;3;6
Vậy B⋮10/
\(A=405^n+2^{405}+17^{37}\left(n\in N\right)\)
\(\Rightarrow A=\overline{.....5}+2^{4.101}.2+17^{4.9}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....6}.2+\overline{.....1}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....2}+\overline{.....7}\)
\(\Rightarrow A=\overline{......4}\)
Vì chữ số tận cùng của \(A\) là \(4\)
Nên \(A=405^n+2^{405}+17^{37}\) không chia hết cho \(10\)
\(\Rightarrow dpcm\)
Ta có : 405^n + 2^405 + m^2 = (.......5) + 2^404. 2 + m^2 = (.........5)+ (........6).2 + m^2 = (......5)+(......2)+m^2
= (......7) + m^2
Để A chia hết cho 10 => m^2 phải có c/s tận cùng là 3 mà số chính phương ko có c/s tận cùng là 3
Vậy A ko chia hết cho 10
tick nha bạn !