Chứng minh
(13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103) : 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=-\left(1+4+7+...+100\right)\\ B=-\dfrac{\left(100+1\right)\left[\left(100-1\right):3+1\right]}{2}=-\dfrac{101\cdot34}{2}=-1717\\ C=10+10+10+10-103=50-103=-53\)
Bạn có thể viết rõ ra ko chứ ntn tớ ko nhìn được
mik làm 1 câu thôi các cau khác 1 chang lun chỉ khác số
A = 1 + (-2) + 3 + (-4) + 5 +(-6) + ... + 99 + (-100)
A=(1+(-2))+(3+(-4))+.....+(99+(-100))
A=(-1)+(-1)+......+(-1) CÓ 50 SỐ
A= -50
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
S = 13+10+23+20+33+30+...+103+100
S = 13+23+33+...+103+10.100
S = 3025+1000
S = 4025
\(S=23+43+63......+203\)
\(S=26+46+66......+206-3.10\)
\(S=2.13+2.23+3.33......+2.103-3.10\)
\(S=2.\left(13+23+33......+103\right)-3.10\)
\(S=2.580-3.10=1130\)
a) 2 + 3 3 + 4 2 + 13 2 = 196 = 14 2
b, 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
\(\left(1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3+9^3+10^3\right)\)
\(=\left(1+2+3+...+10\right)^2\)
\(=\left(\dfrac{10\cdot11}{2}\right)^2=\left(5\cdot11\right)^2=25\cdot121⋮11\)
Ta sẽ chứng minh \(1^3+2^3+3^3+...+n^3=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\) bằng quy nạp. (*)
Thật vậy, với \(n=1\) thì (*) thành \(1^3=\left[\dfrac{1.2}{2}\right]^2\), luôn đúng
Giả sử (*) đúng đến \(n=k\ge1\), khi đó cần chứng minh (*) đúng với \(n=k+1\). Thật vậy, với \(n=k+1\) thì
\(VT=1^3+2^3+3^2+...+k^3+\left(k+1\right)^3\)
\(=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\) (theo giả thiết quy nạp)
\(=\left(k+1\right)^2\left(\dfrac{k^2}{4}+k+1\right)\)
\(=\left(k+1\right)^2\left(\dfrac{k^2+4k+4}{4}\right)\)
\(=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
\(=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Vậy (*) đúng với \(n=k+1\). Theo nguyên lí quy nạp, (*) được chứng minh.
Như vậy \(1^3+2^3+3^3+...+10^3=\left(\dfrac{10.11}{2}\right)^2=\left(5.11\right)^2=25.11^2⋮11\), ta có đpcm.