x(3x+5)-6x-10=0
Help em voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai chẳng biết chuyển vế đổi dấu :v
a) \(x-7=4x+10\)
\(x-4x=10+7\)
\(-3x=17\)
\(x=\dfrac{17}{-3}\)
Vậy \(x=\dfrac{17}{-3}\)
b) \(2x+5=-3x+7\)
\(2x+3x=7-5\)
\(5x=2\)
\(x=\dfrac{2}{5}\)
Vậy \(x=\dfrac{2}{5}\)
c) \(x-\left(3x+7\right)=6x-1\)
\(x-3x-7=6x-1\)
\(-2x-7=6x+1\)
\(-7-1=6x+2x\)
\(-8=8x\)
\(x=\dfrac{-8}{8}=-1\)
Vậy \(x=-1\)
d) \(x+\left(5x-1\right)=15\)
\(x+5x-1=15\)
\(6x=15+1\)
\(6x=16\)
\(x=\dfrac{16}{6}=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\)
1 , x - 7 = 4x + 10
x - 4x = 10 + 7
- 3x = 17
x = 17 : ( - 3 )
x = \(\dfrac{-17}{3}\)
2 , 2x + 5 = -3x + 7
2x + 3x = 7 -5
5x = 2
x = 2 : 5
x =\(\dfrac{2}{5}\)
3 , x - ( 3x + 7 ) = 6x - 1
x - 3x - 7 = 6x - 1
x - 3x -6x = -1 +7
-8x = 6
x = 6 : ( -8 )
x = \(\dfrac{-3}{4}\)
4 , x + ( 5x -1 ) = 15
x + 5x - 1 = 15
x + 5x = 15 + 1
6x = 16
x = 16 : 6
x = \(\dfrac{8}{3}\)
5 , / x + 1 / = / 2x - 5 /
TH 1 : x + 1 = 2x - 5
x - 2x = -5 -1
- x = -4
= > x = 4
TH 2 : -x -1 = -2x + 5
-x + 2x = 5 + 1
x = 6
6 , / 3x + 8 / - / x -10 / = 0
3x + 8 - x + 10 = 0
3x - x = 0 - 10 - 8
2 x = -18
x = -18 : 2
x = - 9
\(\left(3x+4\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x+\left(-8x\right)+6x^2+24x=0\)
\(\Leftrightarrow\left(-11x\right)+6x^2=0\)
Từ đây làm tiếp
(3x+4)(7-2x)+6x(x+4)=0
21x-6x^2+28-8x+6x^2+24x=0
37x+28=0
37x=-28
x=-28/37
2X.(3X-5)=10-6X
<=>2X.(3X-5)+6X-10=0
<=>2X.(3X-5)+2.(3X-5)=0
<=>(3X-5).(2X+2)=0
<=>3X-5=0 và 2X+2=0
=> X=
\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
1
\(\left|5x+8\right|=0\\ 5x+8=0\\ 5x=8\\ x=\dfrac{8}{5}\\ x=1.6\)
2
\(\left|1-3x\right|=1\\ 1-3x=1\\ \Rightarrow\left\{{}\begin{matrix}1-3x=1\Leftrightarrow3x=0\Leftrightarrow x=0\\1-3x=\left(-1\right)\Leftrightarrow3x=-2\Leftrightarrow x=\dfrac{-2}{3}\end{matrix}\right.\)
3
\(\left|3x+2\right|=-3\Rightarrow\varnothing\)
phương trình vô nghiệm vì giá trị tuyệt đối của mọi số điều không âm
4
\(|x-1|=3x+5\) (1)
Ta có \(|x-1|= x-1 \) khi \(x-1\ge0\Rightarrow x\ge1\)
\(\left|x-1\right|=-\left(x-1\right)=1-x\) khi \(x-1< 0\Rightarrow x< 1\)
Với \(x\ge1\) phương trình (1)
\(x-1=3x+5\\ \Leftrightarrow x-3x=5+1\\ \Leftrightarrow-2x=6\\ \Leftrightarrow x=\dfrac{-6}{2}=-3\)
x= -3 không thỏa mãn điều kiện
Với \(x< 1\) phương trình (1)
\(1-x=3x+5\\ \Leftrightarrow-x-3x=5-1\\ \Leftrightarrow-4x=4\\ \Leftrightarrow-4x\cdot\dfrac{-1}{4}=4\cdot\dfrac{-1}{4}\\ \Leftrightarrow x=-1\)
x=-1 thỏa mãn điều kiện
:v cậu đăng ít thôi nhé pai pai
này mình chưa học đâu cớ tuần sau mới học ấy nhưng mà mình coi dạng rồi làm cho cậu nè ;-;
\(\left(x-5\right)\left(x+5\right)-\left(x+2\right)+4x\)
\(=\left(x^2-5^2\right)-\left(x+2\right)+4x\)
\(=x^2-25-x-2+4x\)
\(=x^2+3x-27\)
(3x-2).(9x+6x+4)
=27x^2+18x^2+12x-(18x+12x+8)
=27x^2+18x^2+12x-18x-12x-8
=(27x^2-18x^2)+18x-8
=9x^2+18x-8
mk ko chắc là đúng ko nha nên néu sai thì sorry nha UwU
1, \(4x-10=0\\ \Leftrightarrow x=\dfrac{5}{2}\)
vậy tập no S=\(\left\{\dfrac{5}{2}\right\}\)
2, \(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\) \(x=0\) hoặc \(2x-1=0\) hoặc \(x+3=0\)
\(\Leftrightarrow\) \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)
vậy tập no S=\(\left\{0,\dfrac{1}{2},-3\right\}\)
3, \(x-5=3-x\\ \Leftrightarrow2x=8\\ \Leftrightarrow x=4\)
vậy tập no S=\(\left\{4\right\}\)
4,\(\left(-10x+5\right)\left(2x-8\right)=0\)
\(\Leftrightarrow\) \(-10x+5=0\) hoặc \(2x-8=0\)
\(\Leftrightarrow\) \(x=\dfrac{1}{2}\) hoặc \(x=4\)
vậy tập no S=\(\left\{\dfrac{1}{2},4\right\}\)
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
\(x\left(3x+5\right)-6x-10=0\)
=>\(x\left(3x+5\right)-2\left(3x+5\right)=0\)
=>(3x+5)(x-2)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=2\end{matrix}\right.\)
`x(3x+5)-6x-10=0`
`<=>x(3x+5)-2(3x+5)=0`
`<=>(3x+5)(x-2)=0`
TH1: `3x+5=0<=>3x=-5<=>x=-5/3`
TH2: `x-2=0<=>x=2`