A=x2 -7x+11(x mủ 2nha)
B=3x2-4x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)
a, Cho \(x^2+2022x=0\Leftrightarrow x\left(x+2022\right)=0\Leftrightarrow x=0;x=-2022\)
b, \(3x^2+7x+4=0\Leftrightarrow\left(x+1\right)\left(3x+4\right)=0\Leftrightarrow x=-1;x=-\dfrac{4}{3}\)
c, \(2\left(x^2+2x+1-1\right)+5=0\Leftrightarrow2\left(x+1\right)^2+3=0\)(vô lí)
Vậy đa thức ko có nghiệm tm
a, \(3x^2+4x=2x\Leftrightarrow3x^2+2x=0\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow x=-\dfrac{2}{3};x=0\)
b, \(25x^2-\dfrac{64}{100}=0\Leftrightarrow25x^2-\left(\dfrac{8}{10}\right)^2=0\Leftrightarrow\left(5x-\dfrac{8}{10}\right)\left(5x+\dfrac{8}{10}\right)=0\)
\(\Leftrightarrow x=\dfrac{4}{25};x=-\dfrac{4}{25}\)
c, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=-4;x=4\)
sửa d, \(x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=-3;x=2\)
e, \(x^2-7x=-12\Leftrightarrow x^2-7x+12=0\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\Leftrightarrow x=3;x=4\)
e: ta có: \(x^2-7x=-12\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
\(A=x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
\(B=x^2-4x-5=\left(x-5\right)\left(x+1\right)\)
\(C=3x^2+7x+4=\left(x+1\right)\left(3x+4\right)\)
\(A=x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
\(B=x^2-4x-5=\left(x-5\right)\left(x+1\right)\)
\(C=3x^2+7x+4=\left(x+1\right)\left(3x+4\right)\)
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
\(a,=6x^2+23x+21-\left(6x^2+23x-55\right)\\ =76\left(đpcm\right)\\ b,=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\\ =3\left(đpcm\right)\)
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)