K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

Cách 1: (Chứng minh trực tiếp)

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi C là chân đường cao hạ từ O xuống AB.

ΔOAB có OA = OB = R nên tam giác này cân tại O

⇒ đường cao OC đồng thời là phân giác

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2: (Chứng minh phản chứng)

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giả sử Ax không phải tiếp tuyến của (O)

⇒ Ax là cắt (O) tại C khác A.

+ C nằm trên cung nhỏ AB

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ C nằm trên cung lớn AB

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mà Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác BAC

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy giả sử là sai ⇒ Ax là tiếp tuyến của đường tròn tâm O.

Kiến thức áp dụng

+ Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.

7 tháng 6 2018

Cách 1: (Chứng minh trực tiếp)

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi C là chân đường cao hạ từ O xuống AB.

ΔOAB có OA = OB = R nên tam giác này cân tại O

⇒ đường cao OC đồng thời là phân giác

Cách 2: (Chứng minh phản chứng)

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giả sử Ax không phải tiếp tuyến của (O)

⇒ Ax là cắt (O) tại C khác A.

+ C nằm trên cung nhỏ AB

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ C nằm trên cung lớn AB

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mà Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc ngoài của tam giác BAC

Giải bài 30 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy giả sử là sai ⇒ Ax là tiếp tuyến của đường tròn tâm O.

24 tháng 3 2018

Định lí: Mỗi đa giác đều có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

3 tháng 5 2017

Định lí: Mỗi đa giác đều có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

13 tháng 12 2023

a:Xét (C;CH) có

CH là bán kính

AB\(\perp\)CH tại H

Do đó: AB là tiếp tuyến của (C;CH)

Xét (C;CH) có

AH,AD là các tiếp tuyến

Do đó: AD=AH và CA là phân giác của góc DCH

CA là phân giác của góc DCH

=>\(\widehat{DCH}=2\cdot\widehat{ACH}\)

Xét (C;CH) có

BH,BE là các tiếp tuyến

Do đó; BH=BE và CB là phân giác của góc HCE

Ta có: CB là phân giác của góc HCE

=>\(\widehat{HCE}=2\cdot\widehat{HCB}\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

\(\widehat{DCH}+\widehat{ECH}=\widehat{DCE}\)

=>\(\widehat{DCE}=2\cdot\widehat{ACH}+2\cdot\widehat{BCH}\)

\(\Leftrightarrow\widehat{DCE}=2\left(\widehat{ACH}+\widehat{BCH}\right)=2\cdot\widehat{ACB}=2\cdot90^0=180^0\)

=>D,C,E thẳng hàng

 

13 tháng 12 2023

giup mik cau b,c nua vs ban;-;

26 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác AOBH có BH // OA, AH // OB và OA = OB nên là hình thoi.

a: góc OAD+góc OBD=180 độ

=>OADB nội tiếp

b: góc OAB+góc OBA=1/2*120=60 độ

=>góc AOB=120 độ

=>góc ADB=60 độ

=>CA=AD=DB=CB

=>CADB là hình thoi

NV
22 tháng 3 2023

a.

Do MA là tiếp tuyến \(\Rightarrow AM\perp OA\Rightarrow\Delta OAM\) vuông tại A

\(\Rightarrow O,A,M\) cùng thuộc đường tròn đường kính OM

Do \(OK\perp BC\Rightarrow\Delta OKM\) vuông tại K

\(\Rightarrow O,K,M\) cùng thuộc đường tròn đường kính OM

\(\Rightarrow M,A,O,K\) cùng thuộc đường tròn đường kính OM

Hay tứ giác MAOK nội tiếp đường tròn đường kính OM, với tâm là trung điểm J của OM và bán kính \(R=\dfrac{OM}{2}\)

b.

Do \(AI||BC\Rightarrow\widehat{IAK}=\widehat{AKM}\) (so le trong)

Lại có MAOK nội tiếp \(\Rightarrow\widehat{AKM}=\widehat{AOM}\) (cùng chắn cung AM)

\(\Rightarrow\widehat{IAK}=\widehat{AOM}\) (1)

Mà \(\widehat{AOM}+\widehat{AMO}=90^0\) (\(\Delta OAM\) vuông tại A theo c/m câu a)

\(\Rightarrow\widehat{IAK}+\widehat{AMO}=90^0\)

c.

Gọi E là trung điểm AI \(\Rightarrow OE\perp IA\)

Mà \(IA||BC\Rightarrow OE\perp BC\Rightarrow O,E,K\) thẳng hàng

\(\Rightarrow KE\) đồng thời là đường cao và trung tuyến trong tam giác KAI

\(\Rightarrow\Delta KAI\) cân tại K \(\Rightarrow\widehat{AIK}=\widehat{IAK}\) \(\Rightarrow\widehat{AIK}=\widehat{AOM}\) (theo (1))

Mặt khác \(\widehat{AIK}\) và \(\widehat{AOD}\) là góc nội tiếp và góc ở tâm cùng chắn cung AD của (O)

\(\Rightarrow\widehat{AIK}=\dfrac{1}{2}\widehat{AOD}\Rightarrow\widehat{AOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOD}\right)\)

\(\Rightarrow\widehat{AOM}=\widehat{MOD}\)

Xét hai tam giác AOM và DOM có:

\(\left\{{}\begin{matrix}OM\text{ chung}\\\widehat{AOM}=\widehat{MOD}\left(cmt\right)\\AO=DO=R\end{matrix}\right.\) \(\Rightarrow\Delta AOM=\Delta DOM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ODM}=\widehat{OAM}=90^0\)

\(\Rightarrow MD\) là tiếp tuyến của (O)

NV
22 tháng 3 2023

loading...

a: góc SAO=góc SHO=90 độ

=>SAHO nội tiếp

b: Xét ΔSAB và ΔSCA có

góc SAB=góc SCA

góc ASB chung

=>ΔSAB đồng dạng với ΔSCA

=>SA^2=SB*SC