K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn ghi lại đề nhé

30 tháng 6 2024

ĐỀ này bạn viết lại đi 

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

DO đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

23 tháng 1

a. xét △DGE và △BAE, có:

\(\widehat{DEG}=\widehat{AEB}\left(đđ\right);\widehat{ABE}=\widehat{EDG}\left(slt\right)\)

=> △DGE ∼ △BAE (g-g)

xét △DEA và △BEF, có:

\(\widehat{BEF}=\widehat{AED}\left(đđ\right);\widehat{EBF}=\widehat{ADE}\left(slt\right)\)

=> △DEA ∼ △BEF (g-g)

b. △DEA ∼ △BEF (câu a) => \(\dfrac{BE}{DE}=\dfrac{EF}{EA}\left(1\right)\)

△DGE ∼ △BAE (câu a) => \(\dfrac{BE}{DE}=\dfrac{AE}{GE}\left(2\right)\)

từ (1)(2) => \(\dfrac{EF}{EA}=\dfrac{AE}{GE}=>AE^2=EF\cdot GE\)

31 tháng 1 2018

a)

Ta có: AE/AB = 6/18 = 1/3

           AD/AC = (18:2)/27 = 9/27 = 1/3

Xét ∆AED và ∆ABC có:

Chung góc BAC

AD/AC = AE/AB( = 1/3 )

Suy ra : ∆AED đồng dạng với∆ABC ( đpcm )

b)

Do hai tam giác trên đông dang nên ED/BC = AE/AB = AD/AC

Suy ra ED/BC = 1/3

Suy ra ED/30 = 1/3

Suy ra ED= 10cm

6 tháng 5 2022

a. Xét \(2\Delta:\Delta AEF\) và \(\Delta DCF\) có:

\(\left\{{}\begin{matrix}\widehat{EAF}=\widehat{FDC}=90^o\left(gt\right)\\\widehat{EFA}=\widehat{CFD}\left(đối.đỉnh\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta DCF\left(g-g\right)\)

b. Xét \(2\Delta:\Delta AEF\) và \(\Delta ABC\) có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{AEF}=90^o\left(gt\right)\\\widehat{AEF}=\widehat{ACB}\left(2.góc.tương.ứng\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AE}{EF}=\dfrac{AC}{BC}\Leftrightarrow AE.BC=EF.AC\)

a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

Xét ΔDBC và ΔECB có 

\(\widehat{DBC}=\widehat{ECB}\)

 BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đo: ΔDBC=ΔECB

b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)

nên ΔBEF cân tại E

a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE; AD/AB=AE/AC

c: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

=>góc AED=góc ACB