K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

1/ A= 71+72+73+74+75+76\(⋮\)57

Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)

=7x(1+7+72)+74x(1+7+72)

=7x57+74x57

=57x(7+74)\(⋮\)57

4n+17

Vậy A \(⋮\)57

Phần 2 thiếu đề bài

3/ 4n+17\(⋮\)2n+3

=>4n+17-2x(2n+3)\(⋮\) 2n+3

=>4n+17-4n-6\(⋮\) 2n+3

=>11\(⋮\)2n+3

=>2n+3 \(\varepsilon\)Ư(11)

mà Ư(11) ={1;11}

Vì 2n+3 là số tự nhiên =>2n+3 =11

=>2n=11-3

=>2n=8

=>n=8 :2

=> n=4 

Vậy n=4 thì ...

4/ 9n+17 \(⋮\)3n+2

=>9n+17-3x(3n+2)\(⋮\)3n+2

=>9n+17-9n-6\(⋮\)3n+2

=>11\(⋮\)3n+2

=>3n+2 \(\varepsilon\)Ư(11)

mà Ư(11)={1;11}

Vì 3n+2 là số tự nhiên => 3n+2>2

=>3n+2 =11

=>3n=11-2

=>3n=9

=>n=9:3

=>n=3

Vậy n=3 thì ...

27 tháng 11 2017

Ta có: 24n+2 = 4.16n

Vì 16n luôn có số tận cùng là 6 nên 4.6luôn có số tạn cùng là 24.

Nên suy ra:4n+2 +1 luôn có số tạn cùng là 5 và chia hết cho 5.

27 tháng 11 2017

Bạn Vui Nhỏ Thịnh làm đúng rồi nhưng mình chưa hiểu chỗ ta có 2^4n+2 = 4.16n. bạn giải  thích kĩ hơn đc koo

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

14 tháng 8 2021

1.

\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)

Mặt khác:

\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)

\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)

14 tháng 8 2021

2.

Đề đúng chưa.

Thay n=7 vào thì biểu thức bằng 945 không chia hết cho 384.